Prospects for Slepton and Electroweakino searches at CEPC

Jiarong Yuan (IHEP)

CEPC味物理-新物理和相关探测技术研讨会 August 14th 2023

Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- Standard Model (SM) of particle physics
 - Excellent agreement between the experimental observations and the predictions.
 - Some problems are still unsolved, such as dark matter, hierarchy problem, unification problem.
- Many beyond-SM theories are proposed to solve these problems.
- Supersymmetry (SUSY) is one of the most appealing BSM theories.
 - Introduces a new symmetry between bosons and fermions
 - Helps to explain dark matter, solve hierarchy problem and unification problem

• R-parity:
$$R_p = (-1)^{3B+L+2S} = \begin{cases} +1 \text{ for SM particles} \\ -1 \text{ for SUSY particles} \end{cases}$$

• With R-parity conserved, SUSY particles are produced in pair, and the lightest supersymmetric particle (LSP) is stable.

Introduction – Chargino Pair Production

- This talk will present four prospective searches for slepton and electroweakino.
- The first two searches are for the chargino pair production.
- Bino-wino search via chargino pair production with two muon
 - Bino-like $\tilde{\chi}_1^0$, wino-like $\tilde{\chi}_1^{\pm}$
 - Large mass-splitting between $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$
- Higgsino search via chargino pair production with two muon
 - Higgsino-like $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_1^0$
 - Almost mass-degenerate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$
 - Natural SUSY models predict higgsino mass is about several hundred GeV.
 Bino-wino case
 Higgsino case

Jiarong Yuan et al, Chinese Phys. C 46 013104 (2022)

 $\tilde{\chi}_1^{\mp}$

Introduction – Direct Slepton Production

- The last two searches are for direct slepton production.
- Theoretical motivation for light slepton scenarios
 - Models with light sleptons satisfy the dark matter relic density measurements.
 - Light sleptons can take part in the coannihilation of neutralinos.
 - Gauge-mediated and anomaly-mediated SUSY breaking models expect sleptons masses are several hundred GeV
- Direct smuon production with two muon
 - Light smuons can explain muon g-2 excess
- Direct stau production with two hadronic tau
 - The stau is lighter than other sleptons, squarks and gluinos, so there is higher possibility to find stau.

Jiarong Yuan et al, arXiv:2203.10580 (2022)

Techniques in CEPC Analysis

- Baseline CEPC detector design
 - a particle-flow oriented detector
 - Structure: vertex detector, silicon tracker, time projection chamber (TPC), electromagnetic calorimeter (ECAL), hadronic calorimeter (HCAL), solenoid + muon detector
- E_{cm} : 240 GeV, Luminosity: 5050 fb⁻¹
- Software
 - Generation
 - SUSY Signal sample: MadGraph 2.7.3 + Pythia 8.244
 - Standard Model MC sample: Whizard 1.95
 - Simulation: MokkaC
 - Reconstruction
 - Track reconstruction: Clupatra
 - Object reconstruction: Arbor(particle flow algorithm)
 - Lepton identification: LICH based on Multivariate Data Analysis (TMVA)

Bino-wino Search with Two Muons

- Signal scenario:
 - Pair production of wino-like $\widetilde{\chi}_1^{\pm}$ decaying via W boson
 - Chargino mass ranges from 90 GeV(LEP limit) to ~<120 GeV (CEPC kinematic limit)
- Signature: 2 muons + large M_{recoil}
 - Recoil mass M_{recoil} : the invariant mass of the system recoiling against the two leptons assuming the event total energy \sqrt{s} and zero momentum
 - $M_{\ell\ell}^2 = (\sqrt{s} E_{\ell\ell})^2 p_{\ell\ell}^2 = s 2\sqrt{s}E_{\ell\ell} + m_{\ell\ell}^2$
- Signal region
 - $P_T^{\mu} > 30$ GeV: suppress soft muon backgrounds
 - $M_{recoil} > 130$ GeV: The most powerful cut. Large for signal due to $\tilde{\chi}_1^0$ and ν

ZZorWW→u

P^µ [GeV]

WW→II

νΖ.Ζ→μμ

"N-1" plots: kinematic distributions in SR before the selection on that kinematic is made.

Bino-wino Search with Two Muons

- The discovery potential can reach up to kinematic limit $\sqrt{s}/2$
- Cover the compressed region, which is challenging for hadron collider
- No large influence of systematic uncertainty on signal sensitivity

(b) systematic uncertainty = 5%

(a) systematic uncertainty = 0%

Higgsino Search with Two Muons

- Signal scenario:
 - Pair production of higgsino-like $\widetilde{\chi}_1^\pm$ decaying via off-shell W boson
 - Signal grid is designed for $\mu \tan \beta$ phase space, where μ ranges from 90 GeV (LEP limit) to ~<120 GeV (CEPC kinematic limit)
 - Almost mass-degenerate $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^0$: $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) < 2 \text{ GeV}$
- Signature: 2 soft muons + large M_{recoil}
- Signal region
 - *M_{recoil}*: **The most important selection.** Large for signal due to small mass splitting.
 - Although muon energy is low in SR, we still get good results due to high muon ID efficiency in low-pt region.
 - Muon ID efficiency is ~ 99.9% with energy above 2 GeV, and < 90% for energy below 1.3 GeV at the
 overlap region or the edge of barrel region.

Higgsino Search with Two Muons

- Sensitivity maps in both $\mu \tan \beta$ and $m(\tilde{\chi}_1^{\pm}) \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ phase space
- The discovery potential can reach up to detector kinematic limit $\sqrt{s}/2$
- There is good discovery ability at compressed region.

Direct Smuon Production with Two Muons

- Signal scenario:
 - **Direct production of smuon**, whose mass is bounded by LEP, CEPC limits (from 90 GeV to ~120 GeV).
- Signature: **2 muons +** *M*_{recoil}
- Signal region
 - Three signal regions aiming for different mass difference between $\tilde{\mu}$ and $\tilde{\chi}_1^0$
 - $M_{\mu\mu}$: reject $Z \rightarrow \mu\mu$ backgrounds in ~Z mass region
 - M_{recoil} : large for signal due to $\tilde{\chi}_1^0$

SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM
	Exact 2 OS muons	
	$E_{\mu} > 1.0 \; \mathrm{GeV}$	
$E_{\mu} > 40 \; \mathrm{GeV}$	9 GeV < E_{μ} < 48	_
	GeV	
$\Delta R(\mu, recoil) < 2.9$	$1.5 < \Delta R(\mu, recoil) < 2.8$	
$M_{\mu\mu} < 60 \; { m GeV}$	$M_{\mu\mu} < 80 \; { m GeV}$	—
$M_{recoil} > 40 \; \mathrm{GeV}$		$M_{recoil} > 220 \text{ GeV}$

Direct Smuon Production with Two Muons

- With flat 5% systematic, the discovery sensitivity can reach up to 117 GeV in smuon mass.
- Cover the region with compressed mass spectrum.
- No large impact from systematic uncertainty.

Direct Stau Production with Two Hadronic Taus

- Signal scenario:
 - Direct production of stau, whose mass is bounded by LEP, CEPC limits (from 90 GeV to ~120 GeV).
- Signature: 2 hadronic tau + M_{recoil}
- Signal region
 - Use leading and subleading tracks as 2 taus.
 - Three signal regions according to different mass splitting between $\tilde{\tau}$ and $\tilde{\chi}_1^0$
 - High mass splitting leads to high tau energy
 - Low mass splitting leads to high recoil mass

SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM
	Exact 2 OS taus	
	$E_{ au} > 1.0 \; \mathrm{GeV}$	
$E_{\tau} < 34 \text{ GeV}$	$E_{ au} < 15 \; \mathrm{GeV}$	
$sumP_T > 70 \text{ GeV}$	$sumP_T > 40 \text{ GeV}$	-
-	$0.2 < \Delta \phi(\tau, \tau) < 1.2$	$ \Delta\phi(\tau,\tau) > 0.6$
$2.4 < \Delta\phi(\tau, recoil) < 3$		$ \Delta\phi(\tau, recoil) > 2.3$
$0.4 < \Delta R(\tau, \tau) < 1$	$0.4 < \Delta R(\tau,\tau) < 1.6$	-
$\Delta R(\tau,\tau) < 3.1$		$\Delta R(\tau, recoil) < 2.9$
$M_{\tau\tau} < 50 { m ~GeV}$	$M_{\tau\tau} < 40 { m ~GeV}$	$M_{ au au} < 18 \; { m GeV}$
$M_{recoil} > 90 \text{ GeV}$	$M_{recoil} > 130 \text{ GeV}$	$M_{recoil} > 210 \text{ GeV}$

Direct Stau Production with Two Hadronic Taus

- Assuming flat 5% systematic uncertainty, with left-handed and right-handed stau, the discovery sensitivity can reach up to 116 GeV in stau mass.
- Assuming flat 5% systematic uncertainty, with left/right-handed stau, the discovery sensitivity can reach up to 113 GeV in stau mass.
- Cover the region with compressed mass spectrum.
- No large impact from systematic uncertainty.

Stau, Smuon Sensitivity Map

Sensitivity map for direct slepton($\tilde{\tau}, \tilde{\mu}$) production with 5% flat systematic uncertainty.

- Several prospective searches for slepton and electroweakino have been performed with CEPC.
- The discovery potential is close to the kinematic limit $\sqrt{s}/2$
- The results can be used as a reference for searches at other electron-positron experiments, such as ILC and FCC-ee.

THE END

Backup

Naturalness

- Everything should be made as simple as possible, but not simpler. (A. Einstein)
- The appearance of **fine-tuning** in a scientific theory is like a cry of distress from nature, complaining that something needs to be better explained. (S. Weinberg)
- The most direct relation between **the observed value of the weak scale** and **elements of the SUSY** Lagrangian comes from minimizing the MSSM scalar potential.

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -m_{H_u}^2 - \Sigma_u^u - \mu^2$$

- All terms on RHS should be comparable to or smaller than $m_Z^2/2$
- The soft parameter $m_{H_{\mu}}^2$ is driven radiatively to small negative values at the weak scale
- Radiative corrections $\Sigma_u^u \leq m_Z^2/2$ leads to top-squarks are highly mixed and not too far beyond the few TeV range.
- $\mu \sim 100 300$ GeV. Higgsino-like gaugino mass should be around 100-300 GeV.

Howard Baer, Mikael Berggren et al., PoS ICHEP2016 156 (2016)

Muon ID Efficiency at CEPC

Dan Yu, Manqi Ruan et al., Eur. Phys. J. C 77, 591 (2017).