Global fit of the SMEFT at future lepton colliders

CEPC2023, Fudan University, August 17, 2023

Based on

<u>2206.08326</u>, with Jorge de Blas, Christophe Grojean, Jiayin Gu, Victor Miralles, Michael Peskin, Junping Tian, Marcel Vos, Eleni Vryonidou

The SM, up to now, is very successful. But there are some flaws:

YD, Huang, Li, Yu, 2005.01717 (JHEP) YD, Huang, Li, Li, Yu, 2111.01267 (JCAP)

Chiang, Cottin, YD, Fuyuto, Ramsey-Musolf, 2003.07867(JHEP)

Elahi et al, 1410.6157

Yong Du (杜勇)

On the other hand, neutrinos oscillate

Yong Du (杜勇)

While there are many models for dark matter, neutrinos and other topics as you prefer, the direct experimental observation of any new particle is still null.

Q: How to approach new physics beyond the Standard Model?

<u>A: …</u>

The experimental data are suggesting that the SM is an effective low-energy theory of some UV model above the weak scale.

4

Yong Du (杜勇)

CEPC2023, Fudan U

TDLI

Operators in the Warsaw basis:

	X^3		$arphi^6$ and $arphi^4 D^2$		$\psi^2 arphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^\dagger arphi) (ar l_p e_r arphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(arphi^\daggerarphi)\Box(arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^\dagger arphi) (ar q_p u_r \widetilde arphi)$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_p d_r arphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					
	$X^2 \varphi^2$		$\psi^2 X \varphi$	$\psi^2 \varphi^2 D$		
$Q_{arphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p \sigma^{\mu u} e_r) arphi B_{\mu u}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{arphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{arphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(ar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{arphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}_\mu arphi) (ar{q}_p \gamma^\mu q_r)$	
$Q_{arphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(arphi^\dagger i \overleftrightarrow{D}^I_\mu arphi) (ar{q}_p au^I \gamma^\mu q_r)$	
$Q_{arphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar q_p \sigma^{\mu u} T^A d_r) arphi G^A_{\mu u}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{arphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu u} d_r) \tau^I \varphi W^I_{\mu u}$	$Q_{arphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{arphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar q_p \sigma^{\mu u} d_r) arphi B_{\mu u}$	$Q_{arphi u d}$	$i(\widetilde{arphi}^{\dagger}D_{\mu}arphi)(ar{u}_{p}\gamma^{\mu}d_{r})$	

$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$
$Q_{qq}^{\left(1 ight)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r) (ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$
$Q_{qq}^{\left(3 ight) }$	$(ar{q}_p\gamma_\mu au^I q_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar q_p \gamma_\mu q_r) (ar e_s \gamma^\mu e_t)$
$Q_{lq}^{(3)}$	$(ar{l}_p\gamma_\mu au^I l_r)(ar{q}_s\gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$
		$Q_{ud}^{\left(1 ight) }$	$(ar{u}_p\gamma_\mu u_r)(ar{d}_s\gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(ar{u}_p \gamma_\mu T^A u_r) (ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{\left(1 ight)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating			
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^lpha)^TCu_r^eta ight]\left[(q_s^{\gamma j})^TCl_t^k ight]$		
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(u_s^\gamma)^TCe_t ight]$		
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$		
$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^TCu_r^eta ight]\left[(u_s^\gamma)^TCe_t ight]$		
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu u} e_r) arepsilon_{jk} (\bar{q}_s^k \sigma^{\mu u} u_t)$				

59 operators (+ 4 B-violating ones)

2499 operators: 1350 (CP-even) + 1149 (CP-odd)

No flavor assumptions are made.

5

SMEFT global fit: <u>Basis</u>

We choose to work in the Higgs basis

$$\begin{split} \mathcal{L} \supset eA^{\mu} \sum_{f=u,d,e} Q_{f}(\overline{f}_{I}\overline{\sigma}_{\mu}f_{I} + f_{I}^{c}\sigma_{\mu}\overline{f}_{I}^{c}) \\ &+ \frac{g_{L}}{\sqrt{2}} \left[W^{\mu+}\overline{\nu}_{I}\overline{\sigma}_{\mu}(\delta_{IJ} + [\delta g_{L}^{W\ell}]_{IJ})e_{J} + W^{\mu+}\overline{u}_{I}\overline{\sigma}_{\mu} \left(V_{IJ} + \left[\delta g_{L}^{Wq} \right]_{IJ} \right) d_{J} + \text{h.c.} \right] \\ &+ \frac{g_{L}}{\sqrt{2}} \left[W^{\mu+}u_{I}^{c}\sigma_{\mu} \left[\delta g_{R}^{Wq} \right]_{IJ} \overline{d}_{J}^{c} + \text{h.c.} \right] \\ &+ \sqrt{g_{L}^{2} + g_{Y}^{2}} Z^{\mu} \sum_{f=u,d,e,\nu} \overline{f}_{I}\overline{\sigma}_{\mu} \left((T_{3}^{f} - s_{w}^{2}Q_{f})\delta_{IJ} + \left[\delta g_{L}^{Zf} \right]_{IJ} \right) f_{J} \\ &+ \sqrt{g_{L}^{2} + g_{Y}^{2}} Z^{\mu} \sum_{f=u,d,e} f_{I}^{c}\sigma_{\mu} \left(-s_{w}^{2}Q_{f}\delta_{IJ} + \left[\delta g_{R}^{Zf} \right]_{IJ} \right) \overline{f}_{J}^{c}, \end{split}$$

SMEFT global fit: <u>**Basis</u></u></u>**

We choose to work in the Higgs basis

$$\begin{split} & \delta gLWe \rightarrow cHl 3 \ensuremath{\mathbb{H}} Warsaw v^2 - \frac{cHD \ensuremath{\mathbb{H}} Warsaw gL^2 v^2}{4 \left(gL^2 - gV^2\right)} - \frac{cHWB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{gL^2 - gV^2} - \frac{gL^2 v^2 \ensuremath{\Delta} GF}{2 \left(gL^2 - gV^2\right)} \\ & \delta gLZe \rightarrow - \frac{cHl \ensuremath{\mathbb{H}} Warsaw v^2}{2} - \frac{cHl \ensuremath{\mathbb{H}} Warsaw v^2}{2} + \frac{cHWB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{gL^2 - gV^2} + \frac{cHD \ensuremath{\mathbb{H}} Warsaw \left(gL^2 + gV^2\right) v^2}{8 \left(gL^2 - gV^2\right)} + \frac{\left(gL^2 + gV^2\right) v^2 \ensuremath{\Delta} GF}{4 \left(gL^2 - gV^2\right)} \\ & \delta gRZe \rightarrow - \frac{cHel \ensuremath{\mathbb{H}} Warsaw v^2}{2} + \frac{cHUB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{4 gL^2 - 4 gV^2} + \frac{cHWB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{gL^2 - gV^2} + \frac{gV^2 v^2 \ensuremath{\Delta} GF}{2 gL^2 - 2 gV^2} \\ & \delta gLZu \rightarrow - \frac{cHq \ensuremath{\mathbb{H}} Warsaw v^2}{2} + \frac{cHq \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{3 \left(gL^2 - gV^2\right)} - \frac{cHD \ensuremath{\mathbb{H}} Warsaw \left(3 gL^2 + gV^2\right) v^2}{24 \left(gL^2 - gV^2\right)} - \frac{\left(3 gL^2 + gV^2\right) v^2 \ensuremath{\Delta} GF}{12 \left(gL^2 - gV^2\right)} \\ & \delta gLZd \rightarrow - \frac{cHq \ensuremath{\mathbb{H}} Warsaw v^2}{2} - \frac{cHq \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{3 \left(gL^2 - gV^2\right)} + \frac{cHD \ensuremath{\mathbb{H}} Warsaw \left(3 gL^2 - gV^2\right) v^2}{24 \left(gL^2 - gV^2\right)} + \frac{\left(3 gL^2 - gV^2\right) v^2 \ensuremath{\Delta} GF}{12 \left(gL^2 - gV^2\right)} \\ & \delta gRZd \rightarrow - \frac{cHq \ensuremath{\mathbb{H}} Warsaw v^2}{2} - \frac{2 cHWB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{3 \left(gL^2 - gV^2\right)} + \frac{cHD \ensuremath{\mathbb{H}} Warsaw \left(3 gL^2 - gV^2\right) v^2}{24 \left(gL^2 - gV^2\right)} + \frac{\left(3 gL^2 - gV^2\right) v^2 \ensuremath{\Delta} GF}{12 \left(gL^2 - gV^2\right)} \\ & \delta gRZd \rightarrow - \frac{cHu \ensuremath{\mathbb{H}} Warsaw v^2}{2} - \frac{2 cHWB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{3 \left(gL^2 - gV^2\right)} + \frac{cHD \ensuremath{\mathbb{H}} Warsaw gV^2 v^2}{24 \left(gL^2 - gV^2\right)} + \frac{\left(3 gL^2 - gV^2\right) v^2 \ensuremath{\Delta} GF}{12 \left(gL^2 - gV^2\right)} \\ & \delta gRZd \rightarrow - \frac{cHu \ensuremath{\mathbb{H}} Warsaw v^2}{2} + \frac{cHWB \ensuremath{\mathbb{H}} Warsaw gL gV v^2}{3 \left(gL^2 - gV^2\right)} + \frac{cHD \ensuremath{\mathbb{H}} Warsaw gV^2 v^2}{3 \left(-gL^2 + gV^2\right)} + \frac{cHD \ensuremath{\mathbb{H}} Warsaw gV^2 v^2}{3 \left(-gL^2 - gV^2\right)} \\ & \delta gRZd \rightarrow - \frac{cHu \ensuremath{\mathbb{H}} Warsa$$

CEPC2023, Fudan U

Yong Du (杜勇)

TDLI

We only consider flavor conserving 4-fermion operators

$2\ell 2q$ operators $(p, r = 1, 2, 3)$	4 ℓ operators ($p < r = 1, 2, 3$)
Chirality conserving	Two flavors
$[\mathcal{O}_{\ell q}]_{pprr} = (\overline{\ell}_p \overline{\sigma}_\mu \ell_p) (\overline{q}_r \overline{\sigma}^\mu q_r)$	$[\mathcal{O}_{\ell\ell}]_{pprr} = (\overline{\ell}_p \overline{\sigma}_\mu \ell_p) (\overline{\ell}_r \overline{\sigma}^\mu \ell_r)$
$[O_{\ell q}^{(3)}]_{pprr} = (\bar{\ell}_p \overline{\sigma}_\mu \sigma^i \ell_p) (\bar{q}_r \overline{\sigma}^\mu \sigma^i q_r)$	$[\mathcal{O}_{\ell\ell}]_{prrp} = (\overline{\ell}_p \overline{\sigma}_\mu \ell_r) (\overline{\ell}_r \overline{\sigma}^\mu \ell_p)$
$[\mathcal{O}_{\ell u}]_{pprr} = (\overline{\ell}_p \overline{\sigma}_\mu \ell_p) (u_r^c \sigma^\mu \overline{u}_r^c)$	$[\mathcal{O}_{\ell e}]_{pprr} = (\bar{\ell}_p \overline{\sigma}_\mu \ell_p) (e_r^c \sigma^\mu \overline{e}_r^c)$
$[\mathcal{O}_{\ell d}]_{pprr} = (\overline{\ell}_p \overline{\sigma}_\mu \ell_p) (d_r^c \sigma^\mu \overline{d}_r^c)$	$[\mathcal{O}_{\ell e}]_{rrpp} = (\bar{\ell}_r \overline{\sigma}_\mu \ell_r) (e_p^c \sigma^\mu \overline{e}_p^c)$
$[\mathcal{O}_{eq}]_{pprr} = (e_p^c \sigma_\mu \overline{e}_p^c) (\overline{q}_r \overline{\sigma}^\mu q_r)$	$[\mathcal{O}_{\ell e}]_{prrp} = (\bar{\ell}_p \overline{\sigma}_\mu \ell_r) (e_r^c \sigma^\mu \overline{e}_p^c)$
$[\mathcal{O}_{eu}]_{pprr} = (e_p^c \sigma_\mu \overline{e}_p^c) (u_r^c \sigma^\mu \overline{u}_r^c)$	$[\mathcal{O}_{ee}]_{pprr} = (e_p^c \sigma_\mu \overline{e}_p^c) (e_r^c \sigma^\mu \overline{e}_r^c)$
$[\mathcal{O}_{ed}]_{pprr} = (e_p^c \sigma_\mu \overline{e}_p^c) (d_r^c \sigma^\mu \overline{d}_r^c)$	
Chirality violating	One flavor
$[\mathcal{O}_{\ell equ}]_{pprr} = (\overline{\ell}_p^j \overline{e}_p^c) \epsilon_{jk} (\overline{q}_r^k \overline{u}_r^c)$	$[\mathcal{O}_{\ell\ell}]_{pppp} = \frac{1}{2} (\overline{\ell}_p \overline{\sigma}_\mu \ell_p) (\overline{\ell}_p \overline{\sigma}^\mu \ell_p)$
$[O_{\ell equ}^{(3)}]_{pprr} = (\overline{\ell}_p^j \overline{\sigma}_{\mu\nu} \overline{e}_p^c) \epsilon_{jk} (\overline{q}_r^k \overline{\sigma}_{\mu\nu} \overline{u}_r^c)$	$[\mathcal{O}_{\ell e}]_{pppp} = (\overline{\ell}_p \overline{\sigma}_\mu \ell_p) (e_p^c \sigma^\mu \overline{e}_p^c)$
$[\mathcal{O}_{\ell e d q}]_{p p r r} = (\overline{\ell}_{p}^{j} \overline{e}_{p}^{c}) (d_{r}^{c} q_{r}^{j})$	$\left[\mathcal{O}_{ee} ight]_{pppp} = rac{1}{2} (e_p^c \sigma_\mu \overline{e}_p^c) (e_p^c \sigma^\mu \overline{e}_p^c)$

Full list of observables and different collider options are summarized in great detail in our snowmass paper <u>2206.08326</u>

```
Yong Du (杜勇)
```

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Process	Observable	Experimental value	Ref.	SM prediction
(-)	$g_{LV}^{ u_{\mu}e}$	-0.035 ± 0.017	CHADM H [47]	-0.0396 [48]
$\nu_{\mu} - e^{-}$ scattering	$g_{LA}^{ u_{\mu}e}$	-0.503 ± 0.017		-0.5064 [48]
τ decay	$\frac{G_{\tau e}^2}{G_F^2}$	1.0029 ± 0.0046	PDC2014 [49]	1
/ decay	$\frac{G_{\tau\mu}^2}{G_F^2}$	0.981 ± 0.018	1 D62014 [49]	1
	$R_{ u_{\mu}}$	0.3093 ± 0.0031	CHARM $(r = 0.456)$ [50]	0.3156 [50]
	$R_{\overline{ u}_{\mu}}$	0.390 ± 0.014	CHARM (7 = 0.400) [50]	0.370 [<mark>50</mark>]
Neutrino scattoring	$R_{ u_{\mu}}$	0.3072 ± 0.0033	CDHS $(r = 0.303)$ [51]	0.3091 [51]
Neutrino scattering	$R_{\overline{ u}_{\mu}}$	0.382 ± 0.016	CDH5 (7 = 0.333) [51]	0.380 [51]
	κ	0.5820 ± 0.0041	CCFR [52]	0.5830 [52]
	$R_{ u_e\overline{ u}_e}$	$0.406\substack{+0.145\\-0.135}$	CHARM [53]	0.33 [54]
	$(s_w^2)^{ m M {\it arsigma} m ller}$	0.2397 ± 0.0013	SLAC-E158 [55]	0.2381 ± 0.0006 [56]
	$Q_W^{ m Cs}(55,78)$	-72.62 ± 0.43	PDG2016 [54]	-73.25 ± 0.02 [54]
	$Q_W^{ m p}(1,0)$	0.064 ± 0.012	QWEAK [57]	0.0708 ± 0.0003 [54]
	A_1	$(-91.1 \pm 4.3) \times 10^{-6}$	PVDIS [58]	$(-87.7 \pm 0.7) \times 10^{-6}$ [58]
Parity-violating scattering	A_2	$(-160.8 \pm 7.1) \times 10^{-6}$		$(-158.9 \pm 1.0) \times 10^{-6}$ [58]
	$g^{eu}_{VA} - g^{ed}_{VA}$	-0.042 ± 0.057	SAMPLE ($\sqrt{Q^2} = 200 \text{MeV}$) [59]	-0.0360 [54]
		-0.12 ± 0.074	SAMPLE ($\sqrt{Q^2} = 125 \text{MeV}$) [59]	0.0265 [54]
	$b_{ m SPS}$	$-(1.47 \pm 0.42) \times 10^{-4} \mathrm{GeV^{-2}}$	SPS $(\lambda = 0.81)$ [60]	$-1.56 \times 10^{-4} \mathrm{GeV^{-2}}$ [60]
		$-(1.74 \pm 0.81) \times 10^{-4} \mathrm{GeV^{-2}}$	SPS $(\lambda = 0.66)$ [60]	$-1.57 \times 10^{-4} \mathrm{GeV^{-2}}$ [60]
σ polarization	$\mathcal{P}_{ au}$	0.012 ± 0.058	VENUS [61]	0.028 [61]
	$\mathcal{A}_{\mathcal{P}}$	0.029 ± 0.057	VEROS [01]	0.021 [61]
Neutrino trident production	$rac{\sigma}{\sigma^{ m SM}}(u_{\mu}\gamma^{*} ightarrow u_{\mu}\mu^{+}\mu^{-})$	0.82 ± 0.28	CCFR [62–64]	1
$d_I ightarrow u_J \ell \overline{ u}_\ell(\gamma)$	$\epsilon^{de_J}_{L,R,S,P,T}$	See text	[65]	0
	δA^e_{LR}	2.0%		0.00015
	δA^{μ}_{LR}	1.5%		-0.0006
$e^+e^- ightarrow f\overline{f}$	$\delta A_{LR}^{ au}$	2.4%	SuperKEKB [66]	-0.0006
	δA^c_{LR}	0.5%		-0.005
	δA^b_{LR}	0.4%		-0.020

8

Yong Du (杜勇)

Flat direction lifted by low-energy experiments: muon sector example

Yong Du (杜勇)

Flat direction lifted by low-energy experiments: muon sector example

Yong Du (杜勇)

CEPC2023, Fudan U

TDLI

Flat direction lifted by low-energy experiments: muon sector example

Yong Du (杜勇)

CEPC2023, Fudan U

TDLI

Flat direction lifted by low-energy experiments: electron sector example

Bhabha alone is not enough to close the fit, $A_{\rm PV}$ from PVES is the key

Dev, Ramsey-Musolf, Zhang, 1806.08499 (PRD)

YD, Freitas, Patel, Ramsey-Musolf, 1912.08220 (PRL)

Yong Du (杜勇)

CEPC2023, Fudan U

Flat direction lifted by low-energy experiments: electron sector example

Bhabha alone is not enough to close the fit, $A_{\rm PV}$ from PVES is the key

Dev, Ramsey-Musolf, Zhang, 1806.08499 (PRD)

YD, Freitas, Patel, Ramsey-Musolf, 1912.08220 (PRL)

Yong Du (杜勇)

Flat direction lifted by low-energy experiments: tau sector example

 τ polarization measurement at VENUS is limited by statistics ($\mathscr{L} = 271 \,\mathrm{pb}^{-1}$). CEPC at 240GeV will have better sensitivity with much more statistics (let alone STCF).

Yong Du (杜勇)

Flat direction lifted by low-energy experiments: tau sector example

 τ polarization measurement at VENUS is limited by statistics ($\mathscr{L} = 271 \text{ pb}^{-1}$). CEPC at 240GeV will have better sensitivity with much more statistics (let alone STCF).

Global fit results: Vff couplings

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

12

Yong Du (杜勇)

Global fit results: Vff couplings

Luminosity wins (through radiative return)

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

SMEFT global fit: 4f

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

<u>Global fit results:</u> $2\ell 2q$ couplings

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

Purely bosonic CPV operators: 6 in total, in Warsaw basis

$$\begin{split} \mathcal{O}_{\tilde{G}} &= f^{ABC} \tilde{G}_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} \\ \mathcal{O}_{\varphi \tilde{G}} &= \varphi^{\dagger} \varphi \tilde{G}_{\mu\nu}^{A} G^{A\mu\nu} \\ \mathcal{O}_{\varphi \tilde{W}} &= \varphi^{\dagger} \varphi \tilde{W}_{\mu\nu}^{I} W^{I\mu\nu} \\ \mathcal{O}_{\varphi \tilde{W}} &= \varphi^{\dagger} \varphi \tilde{B}_{\mu\nu} B^{\mu\nu} \\ \mathcal{O}_{\varphi \tilde{W}B} &= \varphi^{\dagger} \tau^{I} \varphi \tilde{W}_{\mu\nu}^{I} B^{\mu\nu} \\ \mathcal{O}_{\tilde{W}} &= \epsilon^{IJK} \tilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \end{split}$$

Purely bosonic CPV operators: 6 in total, in Warsaw basis

Not included (gluon free) — strong constraints from neutron/chromo-EDMs

Cirigliano et al, Phys.Rev.D 94 (2016) 3, 034031

Purely bosonic CPV operators: 6 in total, in Warsaw basis

Not included (gluon free) — strong constraints from neutron/chromo-EDMs

Cirigliano et al, Phys.Rev.D 94 (2016) 3, 034031

- 1. Determination of two anomalous triple gauge couplings (aTGC) from $e^+e^- \rightarrow W^+W^-$
- 2. Another two anomalous Higgs couplings (aHC) from $e^+e^- \rightarrow Zh$ (dominant production channel of ILC at low energies) using angular asymmetries.

Complementarity of hadron and lepton colliders in probing CP violation

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

CEPC2023, Fudan U

Benchmark: Type-II seesaw model

Yong Du (杜勇)

Benchmark: Type-II seesaw model

 $V(\Phi, \Delta) \supset \lambda_4(\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_5 \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi$

$$\mathscr{L}_{Y} = (y_{\nu})_{\alpha\beta} \overline{L_{\alpha}^{c}} i \tau_{2} \Delta L_{\beta} h.c.$$

Yong Du (杜勇)

CEPC2023, Fudan U

TDLI

Benchmark: Leptoquark model

 $\mathcal{L}_{\mathrm{LQ}} \supset \left(\lambda_{i\alpha}^{1L} \bar{q}_{i}^{c} \epsilon \ell_{\alpha} + \lambda_{i\alpha}^{1R} \bar{u}_{i}^{c} e_{\alpha}\right) S_{1} + \lambda_{i\alpha}^{3L} \bar{q}_{i}^{c} \epsilon \sigma^{I} \ell_{\alpha} S_{3}^{I} + \mathbf{h.c.}$

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

Benchmark: <u>Y-Universal Z' model</u>

Extend the SM by $U(1)_{\!_{\mathcal{Z}}}$ but without introducing kinetic mixing and off-diagonal gauge couplings

$$\frac{c_{2B}}{\Lambda^2} = \frac{g_{Z'}^2}{g_1^4 M^2}$$

de Blas, YD, Grojean, Gu, Miralles, Peskin, Tian, Vos, Vryonidou, 2206.08326

Yong Du (杜勇)

CEPC2023, Fudan U

Benchmark: <u>Unfolding</u>

Find the UV models for any operator and any topology (UVBuilder).

CEPC2023, Fudan U

Benchmark: <u>Unfolding</u>

Find the UV models for any operator and any topology (UVBuilder).

Internal fields						
I1	I2	I3	I4	I5		
HyperCharges						
_ <u>2</u>	_ <u>5</u>	<u>1</u>	_ <u>2</u>	<u>4</u>		
3	3	3	3	3		
Gaug	ge intor	mation	$\{503, 500\}$	502}		
$\{3, 1\}$	{3, 2 }	{3, 2 }	$\{3, 1\}$	$\{3, 1\}$		
$\{3, 1\}$	{3, 2 }	{3, 2 }	$\{3, 1\}$	{ 6 , 1}		
$\{3, 1\}$	{3, 2}	{3, 2 }	{ 6 , 1}	$\{3, 1\}$		
{ 3 , 1}	{3, 2}	{3, 2}	{ 6 , 1}	{ 6 , 1}		
{ 3 , 1}	{3, 2}	{ 6 , 2 }	$\{3, 1\}$	$\{3, 1\}$		
{ 3 , 1}	{3, 2}	{ 6 , 2 }	{ 6 , 1}	$\{3, 1\}$		
{ 3 , 1 }	{ 6 , 2 }	{3, 2}	{ 3 , 1}	{ 3 , 1}		
{ 3 , 1}	{ 6 , 2 }	{3, 2}	{ 6 , 1}	{ 3 , 1}		
{ 3 , 1 }	{ 6 , 2 }	{ 6 , 2 }	{ 3 , 1}	{ 6 , 1 }		
{ 3 , 1 }	{ 6 , 2 }	{ 6 , 2 }	{ 6 , 1 }	{ 6 , 1 }		
{ 6 , 1 }	{3, 2}	{3, 2}	{ 3 , 1}	{ 3 , 1}		
{ 6 , 1 }	{3, 2}	{3, 2}	{ 3 , 1}	{ 6 , 1 }		
{ 6 , 1 }	{3, 2}	{3, 2}	{ 6 , 1 }	{ 3 , 1}		
{ 6 , 1}	{3, 2}	{3, 2}	{ 6 , 1 }	{ 6 , 1}		
{ 6 , 1 }	{3, 2}	{ 6 , 2 }	{ 3 , 1}	{ 3 , 1}		
{ 6 , 1 }	{3, 2}	{ 6 , 2 }	{ 6 , 1 }	{ 3 , 1 }		
{ 6 , 1}	{ 6 , 2 }	{3, 2}	{ 3 , 1 }	{ 3 , 1}		
{ 6 , 1}	{ 6 , 2 }	{3, 2}	{ 6 , 1}	{ 3 , 1 }		
{ 6 , 1}	{ 6 , 2 }	{ 6 , 2 }	{ 3 , 1}	{ 6 , 1}		
{ 6 , 1}	{ 6 , 2 }	{ 6 , 2 }	{ 6 , 1 }	{ 6 , 1 }		

YD, Ma, Liao, 2308.XXXXX

Benchmark: <u>Unfolding</u>

Find the UV models for any operator and any topology (UVBuilder).

Q: Which benchmark model for CEPC?

Internal fields							
I1	I2	I3	I4	I5			
	Нур	perCharg	ges				
_ 2	_ 5	<u>1</u>	_ <u>2</u>	4			
3	3	3	3	3			
Gaug	ge intor	mation	$\{503, 500\}$	502}			
$\{3, 1\}$	{3, 2 }	{3, 2 }	$\{3, 1\}$	$\{3, 1\}$			
$\{3, 1\}$	{3, 2 }	{3, 2 }	$\{3, 1\}$	$\{6, 1\}$			
$\{3, 1\}$	{ 3 , 2 }	{3, 2 }	{ 6 , 1}	$\{3, 1\}$			
$\{3, 1\}$	$\{3, 2\}$	$\{3, 2\}$	$\{\overline{6, 1}\}$	$\{\overline{6, 1}\}$			
$\{3, 1\}$	$\{3, 2\}$	{ 6 , 2 }	$\{3, 1\}$	$\{3, 1\}$			
{ 3 , 1}	{3, 2}	{ 6 , 2 }	{ 6 , 1}	$\{3, 1\}$			
{ 3 , 1}	{ 6 , 2 }	{3, 2}	{ 3 , 1}	$\{3, 1\}$			
{ 3 , 1}	{ 6 , 2 }	{3, 2}	{ 6 , 1}	$\{3, 1\}$			
{ 3 , 1}	<i>{</i> 6 <i>,</i> 2 <i>}</i>	{ 6 , 2 }	{ 3 , 1}	{ 6 , 1}			
{ 3 , 1}	{ 6 , 2 }	{ 6 , 2 }	{ 6 , 1}	{ 6 , 1}			
{ 6 , 1}	{3, 2}	{3, 2}	$\{3, 1\}$	$\{3, 1\}$			
{ 6 , 1}	{3, 2}	{3, 2}	{ 3 , 1}	<i>{</i> 6 <i>,</i> 1 <i>}</i>			
$\{6, 1\}$	{3, 2}	{3, 2}	$\{6, 1\}$	$\{3, 1\}$			
{ 6 , 1}	{3, 2}	{3, 2}	{ 6 , 1}	<i>{</i> 6 <i>,</i> 1 <i>}</i>			
{ 6 , 1}	{ 3 , 2}	{ 6 , 2}	$\{3, 1\}$	$\{3, 1\}$			
{ 6 , 1}	{3, 2}	{ 6 , 2 }	{ 6 , 1}	$\{3, 1\}$			
{ 6 , 1}	{ 6 , 2 }	{3, 2}	{ 3 , 1 }	{ 3 , 1 }			
{ 6 , 1}	{ 6 , 2 }	{3, 2}	{ 6 , 1 }	{3, 1}			
{ 6 , 1}	<i>{</i> 6 <i>,</i> 2 <i>}</i>	{ 6 , 2 }	$\{3, 1\}$	{ 6 , 1 }			
{ 6 , 1}	<i>{</i> 6 <i>,</i> 2 <i>}</i>	{ 6 , 2 }	{ 6 , 1}	<i>{</i> 6 <i>,</i> 1 <i>}</i>			

YD, Ma, Liao, 2308.XXXXX

Yong Du (杜勇)

Summary

- I discussed the global fit of 4f and CPV SMEFT operators at future colliders:
 - Beam polarization is the key to surpass circular colliders in studying 4f ints.
 - Luminosity largely wins otherwise for circular colliders;
 - aTGCs will be the key to improve the sensitivity of the bosonic CPV operators.
 - Several benchmark models are discussed (type-II seesaw, leptoquark models, etc)

