

R&D of High-Granularity Crystal ECAL for CEPC

Zhiyu Zhao (TDLI/SJTU)

On Behalf of CEPC Calorimeter Working Group

CEPC Flavor Physics/New Physics/Detector Technology Workshop

13-18 August, 2023

Motivation: New Detector for CEPC

- CEPC: future lepton collider
 - Higgs/W/Z bosons, top, BSM searches, etc.
 - Precision jet measurement
 - Particle-Flow Algorithm (PFA)
 - High-granularity calorimeter: separation of showers
- New "CEPC 4th concept" detector design
 - High-granularity crystal ECAL 🔶
 - 5D detector: 3D spatial + energy + time
 - Intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Scintillating glass HCAL
 - High density for better boson mass resolution

Crystal ECAL R&D: Overview

- Crystals arranged to be orthogonal between layers
- Readout from two sides

Optimization and validation

cylindrical crystal ECAL

- Dedicated new reconstruction software
- Performance evaluation and optimization

Hardware development

- Unit test(BGO+SiPM)
- Development of crystal module(s) for beam tests

Performance Comparison: SiW vs. Crystal

Baohua Qi(IHEP) Zhiyu Zhao(TDLI/SJTU)

- CEPC CDR baseline SiW-ECAL
 - Sampling calorimeter, small X_0 and R_M
- CEPC 4th concept: crystal calorimeter

Mass Resolution of pi0

- Homogenous, high energy resolution
- PFA reconstructed with "Arbor"

Resolution[%] 18 $\pi^0 \rightarrow \gamma \gamma$ 9% vs. 4% @5GeV 14 12<u></u> 10 --- Crystal ECAL SiW ECAL 10 20 30 40 50 Energy[GeV] $\frac{\delta m_0}{m_0} = \frac{\delta E_1}{2E_1} \bigoplus \frac{\delta E_2}{2E_2} \bigoplus \cot \frac{\alpha}{2} \frac{\delta \alpha}{2}$

π^+/γ separation with barrel ECAL

Performance comparison: SiW vs. Crystal

Baohua Qi(IHEP) Zhiyu Zhao(TDLI/SJTU)

- Higgs boson mass resolution(BMR)
 - $H \rightarrow gg: 4.5\% \rightarrow 3.6\%$
 - $H \rightarrow \gamma \gamma$: 2.1% \rightarrow 1.2%

BMR $(H \rightarrow \gamma \gamma)$

ECAL Performance: $B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma$

$> B^0 \rightarrow \pi^0 \pi^0 \rightarrow \gamma \gamma \gamma \gamma$ measurement

- Necessary channel to determine CKM angle α
- ECAL performance can be characterized by σ_{m_B}
- Highly depending on the π^0 reconstruction

Reconstruction Algorithm Dedicated to Long Crystal Bar ECAL

Yang Zhang (IHEP) Weizheng Song (IHEP)

➤ Clustering

Shower recognition:

- Charged particle: track-matching.
- EM shower: Hough transformation.
- Fragment: cone-clustering.

> Energy splitting for overlap showers

Ambiguity problem

• Need more efforts on multi-hit rec

HGC crystal ECAL: software development progress and highlights(CEPC Workshop, Edinburgh, 2023)

Light Yield of BGO Crystal Bar

- Energy resolution: need stochastic term < 3%
- Light yields: number of detected photons per MIP
 - Experiment: >300 pe/MIP ($1 \times 1 \times 40 cm^3$ BGO, ESR, NDL 6µm SiPM)
 - Standalone simulation: required >100 pe/MIP
- Able to detect low-energy particles ~600keV

			\wedge									\rightarrow						
		$\boldsymbol{\Lambda}$	>	ς Γ								130						
8		Υţ	1	Xo										3			/ -	
V			\mathbf{Z}	Π.												″		
						ALL	Contrast of	-	The local division of the	-	-	A DEC.	(a)	100	dial for			
		-			1 Start						V 7	1		V		11	17	
	4											/ /		12				
										$\Box Y$		/ ^						

Baohua Qi(IHEP)

Simulation: 40×40×28 supercell, BGO long bars, gaps, 1~40 GeV electrons Digitization: photon statistics, gain uncertainty, ADC error,...

Light Yield vs Stochastic Term

Time Resolution of BGO Crystal Bar

- Potential for improving shower reconstruction
- Experiment setup: •
 - double-side readout
 - Fast sampling rate(1.25 GS/s) ٠
 - Leading edge fitting + constant fraction timing ٠
- Timing resolution ~1ns at MIP signal level ٠

MIP SiPM1 SiPM2 Ch1 Ch2 Scintillator(BGO)

Definition of time resolution: $\sigma(t_{ch1} - t_{ch2})$

Time Resolution vs. Fraction

Zhiyu Zhao(TDLI/SJTU)

Time Resolution of BGO Crystal Bar

- Geant4 optical simulation
 - Ultimate performance (triggering first photons): ~0.4ns
 - Including digitization (SiPM waveform): ~0.87ns
- Experimental result: ~1ns
- Future development for time resolution test:
 - Crystals with different sizes
 - Contribution of SiPM, reflective film and electronics

Crystal Module Beam Test

- Motivation
 - Identify critical questions/issues on system level
 - Mechanical design, PCB and electronics...
 - Evaluate performance with TB data
 - Validation of simulation and digitization
- First $12 \times 12 \times 12$ cm³ BGO modules development
 - 2×2×12 cm3 BGO unit, 72 channels, double-sided readout
- Beam test at CERN T9 beamline(May, 2023)
 - Muon, electron and pion beam
- Future plan: 2 modules serial arrangement

CAEN A5202 with Citiroc-1A chips

- 36 crystals wrapped with ESR and AI foil
- 4 PCB boards
- 3D printed support structure

Crystal Module Beam Test

Crystal Module Beam Test

- 10 GeV/c muon- beam: MIP response
 - High/low gain, Hold-Delay time, shaping time scans
 - ~5.5M events acquired
- 0.5~5 GeV/c electron beam: energy response
 - ~980k events
- Other data
 - Pion- data for high fluence test
 - Self-trigger of "leaked particles" form upstream
 - Temperature monitoring data

Beam Profile

Summary and Prospects

- > High-granularity crystal calorimeter: a new design proposed for CEPC
 - > Optimal EM energy resolution, excellent resolutions in 3D space and timing
- Crystal-SiPM lab measurements
 - Good sensitivity and resolution to low-energy photons (~600keV level)
 - MIP timing resolution ~1ns (per crystal)
- Crystal module development
 - First small-scale crystal module developed
 - Successful CERN beam test at CERN PS-T09; ongoing data analysis
 - Second crystal module in preparation + another beam test is scheduled
- > Open questions for crystal calorimeter option
 - > What are (significant) physics potentials for CEPC flavor physics?
 - > How to best exploit the crystal ECAL option to strength the flavor physics cases?

Backup

Low Energy Photon Detection of BGO

- BGO has the ability to detect low-energy photons
- SiPM: HAMAMATSU C13360-3050SA
- BGO crystals with different sizes
- Source: Cs-137, 662keV γ

< 16 >

Separation of Di-Particle with Long Crystal Bar ECAL

Yang Zhang (IHEP)

- Separation of di-photon
 - Separation efficiency ~95% with distance > 30mm

150

200

250

- Separation of photon and charged hadron
 - Separation efficiency ~95% with distance > 30mm

Distance / mm < 17 >

350

300

General Geometry Design for Crystal ECAL

Detailed Assembly of PCB and Crystal

• Mechanical assembly: crystals will be supported by curb pins through hole on PCB

