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the CEPC project
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two JFT algorithms
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Jet Tagging via Particle Clouds
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How to represent a jet is at the core of machine learning on jet physics. Inspired by the notion of
point clouds, we propose a new approach that considers a jet as an unordered set of its constituent
particles, effectively a “particle cloud”. Such a particle cloud representation of jets is efficient
in incorporating raw information of jets and also explicitly respects the permutation symmetry.
Based on the particle cloud representation, we propose ParticleNet, a customized neural network
architecture using Dynamic Graph Convolutional Neural Network for jet tagging problems. The
ParticleNet architecture achieves state-of-the-art performance on two representative jet tagging
benchmarks and is improved significantly over existing methods.




input features :

2 = - [part_isElectron, null]
the ParticleNet architecture (part_ishuon, null]
—~ [part_isNeutralHadron, null]
[part_isPhoton, null]

particles ordered independent and permutation symmetry [part_de, null]
[part_d@err, 0, 1, 0, 1]

find the nearest k neighbor particles for each particle el e -

[part_deta, nulll
[part_dphi, nulll

coordinates [part_e_log, -0.687, 1.0]
[part_logptrel, -4.7, 1.0]
‘\\\ [part_logerel, -4.473, 1.0]
( \ [part_deltaR, 2.1, 2.3]
features _

[part_charge, null]

[part_isChargedHadron, null]
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JFT evaluation
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FT matrix, whose trace can be used 0.059  0.031
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Migration matrix of LCFIPlus v.s. PN

predicted predicted

C C

uds 0.008

LCFIPlus PN

* PN could improve the FT performance by 14% in trace compared to the default algorithm at the CEPC.
* b/c tagging efficiency is improved by 15%/34%
* c-tagging is more challenging as its properties lie between those of b and light




FT v.s. jet direction
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The FT performance in endcap is not as well as that of barrel. (resolution of Pt and impact parameters)
The FT performance improves much significant in the endcap region.




benchmark performance
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the dependence of JFT on vertex detector configuration

the VXD configuration

Table 1. The baseline design parameters of the CE

ertex system.
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R(mm)

Z(mm)

single-point
resolution(pumn)

material
budget

16
18
37
39
58
60

62.5
62.5
125.0
125.0
125.0
125.0

2.8

0.15%/X
0.15%/X
0.15%/X
0.15%/X
0.15%/X
0.15%/X

the baseline tracking system



the dependence of JFT on vertex detector configuration

Z. Wu et al 2018 JINST 13 T09002
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?Study of vertex optimization at the CEP
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the dependence of JFT on vertex detector configuration

e resolution
e material budget

' o e inner radius
_ \‘%i\: -
o

PN Eas- L CFIPlus

e resolution
e material budget
e inner radius

2.2

2.2 T T T T T T T T T T T T T T T T T T
~1.00 -0.75 —=0.50 —=0.25 0.00 0.25 0.50 0.75 1.00 —1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

new _y 1092(=—— new_)

baseline baseline

l0g2(—+—

RO : RO .
PN : T7,,;, = 2.639 + 0.031 - log,—"“"™ 1 0.019 - log,—<"" 4+ 0.059 - log,

material resolution radius
0 0 0

- 5 Rmaterial Rresolution Rradius
LCFIPlus : Tr,,;, = 2.303 + 0.065 - log, 0038 log,- = = = = U095 2[00

material resolution radius

radius

» Overall, the FT performance is closer to ideal condition (77,,,, = 3) with PN.
* The FT performance is more sensitive to the vertex radius, then the material budget, and the last single

point resolution.
* The dependence of FT performance on VTX configuration with PN is consistent with that of LCFIPlus,

which gives a solid evidence for the effectiveness of PN applying to the CEPC.
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Summary

- Flavor tagging is crucial in many physics analyses tasks.

+ The dependency of FT performance on vertex detector
configuration is consistent with previous study, we
conclude that the PN is effective at the CEPC.

© The pN can improve the measurement of the relative
statistical uncertainty of vwHcc by more than 35%
compared to that of the LCFIPlus.
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part_pt: np.hypot(part_px, part_py)
part_pt_log: np.log(part_pt)

part_e log: np.log(part_energy)
part_logptrel: np.log(part_pt/jet_pt)
part_logerel: np.log(part_energy/jet_energy)
part _deltaR: np.hypot(part_deta, part_dphi)
part_d@: np.tanh(part_d@val)

part_dz: np.tanh(part_dzval)

Trmlg - Tropt
Mmiqg = - (M| —M +M
mig Tr — Tropt ( / opt) opt

Trmig - Tropt

Mmig =
Tr1/3 — Tropt

+ (M1/3 — Mopt) + Mopt






original after scaling
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