

Partical Identification Detectors on Electron-Ion Colliders

Zhihong Ye

CEPC Flavor & New Physics Workshop, Fudan University, 08/17/2023

EIC in US (eRHIC)

Main goals: Study quark and gluon structures in ions
 e.g., spin, mass, exotic states, nuclear-medium effect, gluon saturation, ...

- $\circ~$ To be built at BNL, by BNL and Jefferson Lab
- ~20GeV pol. electron & ~300 GeV/c pol. proton & He3 (+unpolarized ions)
- 2020: approved with \$3.5B, 2021 Conceptual Design, 2022
 Detector#1 (ePIC), 2024: Technical Design, ...
- Active physics simulation + accelerator design + detector R&D

2/16

ePIC (detector#I)

EIC in China (EicC)

- □ Use the existing HIAF ion-accelerator (Huizhou, Guangdong)
- □ Add a new 3.5GeV electron-accelerator, collider-rings, IP detector
- Complementary to eRHIC, but focus on studying sea-quarks
- □ Chinese/English white-papers released; working on CDR
- □ Active physics simulation, accelerator & detector designs *Front.Phys.(Beijing)* 18 (2023) 4, 44600

CSNS

➤Two Important Physics Reactions: →Access Spin and Angular Momenta

Roer-Mulder

Long-Transversity

Pretzelositv

 $h_{1L}^{\perp}(x,k_{T}^{2})$

 $h_1(x,k_T^2)$

 $h_{1T}^{\perp}(x,k_T^2)$

Image: Constraint of the systemConstraint of the systemImage: Constraint of the system</

 $g_1(x,k_r^2)$

 $g_{1T}(x,k_{T}^{2})$

u

d

Helicity

Trans-Helicity

Unpolarized

 $f_{1T}^{\perp}(x,k_{T}^{2})$

Sivers

p

 (\mathbf{u})

Nucleon Polarization

Ν

Р

□ Generalized Parton Distributions (GPD)

> eRHIC PID Detectors:

- □ Asymmetric & hermetic
- High granuity
- □ Fast responses
- Compact
- Magnet tolerance, radiation hard
- □ Triggerless

	Mode	mRICH	hpDIRC	dRICH		
				aerogel	gas	
π/K	Ring Imaging	2-9	1 - 7	2 - 13	12 - 50	
	Threshold	0.6 - 2	0.3 - 1	0.7 - 2	3.5 - 12	
<i>e</i> /π	Ring Imaging	0.6 - 2.5	< 1.2	0.6 - 13	3.5 - 15	
	Threshold	< 0.6		< 0.6	< 3.5	

□ Modular RICH (mRICH) was replaced by pfRICH in 2023

6/16

> AC-LGAD:

PID	ETTL	CTTL	FTTL
e/π	< 0.5	< 0.45	< 0.6
π/K	< 2.1	< 1.3	< 2.2
K/p	< 3.3	< 2.2	< 3.7

□ New technique, active R&D:

 $\circ~$ Goals: Time resolution~25ps, Tracking resolution ~100 um

□ Another Option: mRPC

Tsinghua (Wang Yi's group) obtains ~16ps from sealed mRPC
 Vs AC-LGAD: thick, less position precision

□ What FEE to match? \rightarrow R&D needed!

➤ Dual-RICH (dRICH):

□ Radiators: Aerogel ($n \sim 1.02$) + C_2F_6 Gas ($n \sim 1.0008$)

Detector: 0.5 m²/sector, 3x3 mm2 pixel

 \Box Polar angle: 5-25 deg, π/K separation: 3-60 GeV/c

 \Box Single-photon detection in ~1T magnetic field

Proximity-focusing RICH (pfRICH):

➤ Aerogel

- Three radial bands
- > Opaque dividers
- > 2.5 cm thick, 42 tiles total

➤ Vessel

- Honeycomb carbon fiber sandwich
- Filled with nitrogen
- > HRPPD photosensors
 - > 120 mm size
 - Tiled with a 1.5mm gap
 68 sensors total

Goals:

 \circ 3 σ e/ π /K separation up to 7 GeV/c

High-performance DIRC (hpDIRC):

Goals:

separation [s.d.]

- \circ e/ π / separation up to 1.2 GeV/c
- $\circ \pi/K$ separation up to 6 GeV/c

• Good timing

10/16

➤ Calorimeters:

Goals:

- Gamma photons' energies (up to 2%)
- Additional $e/\pi/K$ separations (efficiencies)

	EEMC	BEMC	FEMC	IHCAL	OHCAL	LFHCAL
tower size	$2x2x20 \text{ cm}^3$	4x4x45.5 cm ³ projective	in: $1x1x37.5$ cm ³ out: $1.6x1.6x37.5$ cm ³	$\Delta\eta\sim 0.1 \ \Deltaarphi\sim 0.1$	$\Delta\eta\sim 0.1 \ \Deltaarphi\sim 0.1$	$5x5x140 \text{ cm}^3$
material	PbWO ₄	projective SciGlass	out: 1.6x1.6x37.5 cm ³ Pb/Scintillator	$l \sim 4.5 \text{ cm}$ Steel/ Scintillator	$l \sim 88 \text{ cm}$ Steel/ Scintillator	Steel/W/ Scintillator
d _{abs}	-	-	1.6 mm	13 mm	in: 10.2 mm	16 mm
d _{act} N _{layers} N _{towers} (channel)	20 cm 1 2876	45.5 cm 1 8960 ⇔17	4 mm 66 19200/34416	7 mm 4 1728	out: 14.7 mm 7 mm 5 1536 36 - 48	4 mm 70 9040(63280) 65 - 72
R_M f_{sampl} λ/λ_0	2.73 cm 0.914 ~ 0.9	3.58 cm 0.970 ~ 1.6	5.18 cm 0.220 ~ 0.9	2.48 cm 0.059 ~ 0.2	14.40 cm 0.035 $\sim 4 - 5$	21.11 cm 0.040 7.6 - 8.2
η acceptance resolution	$-3.7 < \eta < -1.8$	$-1.7 < \eta < 1.3$	$1.3 < \eta < 4$	$1.1 < \eta < 1.1$	$1.1 < \eta < 1.1$	$1.1 < \eta < 4$
- energy	$2/\sqrt{E}\oplus 1$	$2.5/\sqrt{E} \oplus 1.6$	$7.1/\sqrt{E} \oplus 0.3$		$75/\sqrt{E} \oplus 14.5$	$33.2/\sqrt{E} \oplus 1.4$
- <i>φ</i>	~ 0.03	~ 0.05	~ 0.04		~ 0.1	~ 0.25
- η	~ 0.015	~ 0.018	~ 0.02		~ 0.06	~ 0.08

Photo-Sensors & Electronics:

- **Requirements:**
 - Work in 3T magnetic field
 - Radiation Hard
 - Highly compact & pixelized
 - Great timing resolution (<10ps)

□ SiPM, MCP, LAPPD/HRPPD ...

Streaming readout (trigger less):

- Front-end ASIC (EICROC ...)
- Wave-form sampling
- Online reconstruction and selection

11/16

R&D Activities --- eRHIC, China Contributions

Calorimeters

 Fudan, Shandong & Tsinghua, working with UCLA to construct 70% W-Powder HCal

Others:

- o mRPC in Detector#2
- \circ MPGD
- \circ AC-LGAD
- \circ Far-forward detectors

□ RICH Detectors:

 Hydrophobic Aerogel Developments, to be tested at Temple Univ (compared with Chiba Aerogels)

First 10cm x 10cm x 2cm tiles

- To design & build a dRICH & a mRICH Prototype
- MCP Photo-sensors (w/ Qian Sen's group from IHEP, see talk by Lishuang Ma)

R&D Activities --- EicC

□ EicC tentitive PID detector concepts are similar to ePIC's:
 □ Lower particle momenta → less challenges vs US-EIC

□ Early phases

□ Active physics simulation + detector design

□ Senergistic to US-EIC and other domestic projects in China

R&D Activities --- EicC

□ Experience on Shashlyk ECAL

Barrel Shashlyk ECAL R&D

□ Other ECAL R&D (W-powder, Csl...)

Summary

• eRHIC in US and EicC in China are designed to explore how quarks and gluons compose protons and nuclei

 \Box Important physics reactions require identification of leptons/hadrons in a wide range of momenta and 4π coverage

□ High rate, strong magnetic fields, big radiation background need good-performance PID detectors

□ AC-LGAD TOF, dRICH (hadron endcap), pfRICH/mRICH (electron endcap), DIRC (barrel), and calorimeters are combined to identify $e/\gamma/\pi/K/p$ up up to 60GeV/c in full angular coverages

□ Big challenges on photo-sensors & front-end electronics, especially with trigger-less streaming readout DAQ

□ Active detector designs, R&D and prototyping both in China and globally

Great experience being shared among EICs and other projects

BACKUP

Multi-gap Resistive Plate Chamber (MRPC)

General Princple

□ Low-resistivity glass plates, Standard gas (95% F134a + 5% iso-butane), HV(~12kV)

Good performances:

time resolution, efficiency, rate capacity (>30kHz/cm²), radiation-hard, magnet safe

□ Certain spatial resolution (by strip pitch)

□ Low cost, easy manufacturing, large sensitive area (up to 1.0mx0.5m)

□ Used by ALICE, STAR, etc.

Tsinghua's Sealed MRPC (sMRPC)

□ Most recent tests: cosmic ray with x-ray background

- ✓ 32-gaps (4 stacks), 400um thin glasses
- ✓ 104um gas-gap + waveform-sampling → 20ps & 95%
 efficiency at 15kHz Y. Yu et al 2020 JINST 15 C01049
- ✓ 128um gas-gap + ToT method \rightarrow 20ps at 15kHz

□ No in-beam test yet

Y. Yu et al 2022 JINST 17 P02005

MRPC

Deliveries#4

Cosmic and Beam Test

Goals:

- Validate simulation framework and machine-learning method
- Investigate different eco-friendly gas mixtures
- Study real performance with high-energy/high-rate background
- Test out front-end electronics

To-dos:

- UIC local test with cosmic-ray + xray background
 2 planes of 16-layer sMRPC + SAMPIC
- Jlab/FermiLab beam test

2 planes of 16-layer sMRPC + SAMPIC and NALU

Tsinghua's local test with cosmic-ray + x-ray background
 2 planes of 32-layer sMRPC + USTC FEE
 + DT5742 (DSR4) and DT5202 (picoTDC)

