Time of flight detector
based on Low Gain
Avalanche Diodes

technology

Zhijun Liang
(Institute of High Energy physics, CAS, China )



Outline

|. Low Gain Avalanche Diodes technology (LGAD) for LHC upgrade

II. LGAD development for CEPC time of flight detector




Challenges of HL-LHC

* In~2029, LHC will run in "high luminosity" , called HL-LHC

The instantaneous luminosity will be a factor of ~5 — 7.5 higher than the LHC nominal values

4000 fb?, collect “x10 more data than Run3 in the long term

Pileup of ~200 vertices per interaction

Track reconstruction: complexity increases exponentially or worse with pileup

On average 1.6-2.35 vertices per mm

Pileup increases

LHC: Pileup of 25 HL-LHC: Pileup of 200




High Granularity Timing Detector (HGTD)

HGTD aim to reduce pileup contribution at HL-LHC

* Timing resolution is required to be better than 30 ps (start) - 50 ps (end) ps per track

6.4 m? area silicon detector and ~ 3.6 X 10° channels

High Granularity: Pixel pad size: 1.3 mm X 1.3 mm

Radiation hardness : 2.5x10** N, /cm? and 2 MGy

Spurious Hard-scatter jet

ile-up jet
¥ 5 Jet from
pile-up

Pile-up™  Hard scatter




Low Gain Avalanche Detectors (LGAD)
* Compared to APD and SiPM, LGAD has modest gain (10-50)

* High drift velocity, thin active layer ( fast timing)

* High S/N, no self-triggering
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* Modest gain to increase S/N

* Need thin detector to decrease t,;,
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Latest prototypes produced by different vendors

* Lots of prototypes R&D in LGAD in last few years, active vendors includes:
e |IHEP-IME (China), USTC-IME (China), IHEP-NDL(China), FBK (Italy), CNM (Spain), HPK (Japan) ...

FBK-UFSD 3.2 (2020)
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LGAD Single Event Burnout effect (HV stability in the beam)
* RD50, CMS and ATLAS confirmed Single Event Burnout (SEB) effect in testbeam

* The key to avoid burnout effect is to operate at low HV
* Safe region: <11 V/um

* Operate voltage needed to be <550 V (assuming 50 um thick EPI layer)

* HGTD performed test beam at CERN and DESY
* 120 GeV at CERN proton beam and 5GeV electron beam at DESY
* Good performance for Carbon-enriched LGAD
e Survived at Operation voltage

Burn mark of Single Event Burnout
A , o

DESY test beam
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LGAD sensor after Irradiation

 After irradiation, Boron doping in gain layer became less active (Acceptor removal)
* |[HEP-IME/FBK/USTC-IME LGAD with carbon

e Significantly lower acceptor removal ratio

e Significantly more radiation hard
IHEP and USTC LGAD has the lowest removal
rate (most radiation hard)
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Performance of various LGAD prototypes at 2.5e15 cm™ fluence

e Carbon enriched LGADs fulfil HGTD sensor requirements after irradiation
* Reach 35ps after 2.5e15 cm2 fluence

* Carbon-enrichment LGAD allows the sensors to be operated at low voltages
* Single event break down (SEB) may happen if Operation Voltage >550V
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FLEX tail

HGTD Module assembly

* 225 front-end channels (15 X 15) in each module
* Fast ASIC and LGAD connected by bump bonding
* Dead area between pixels is about 50 um

HV wire-bonding

Bump-bending

[ o) Ty 7 }Oomommm 15 X 15 pixels efficiency map
| — —== In module beam test

ATLAS HGTD Test Beam Preliminary

Y[mm]
Efficiency

£

w

ALTIROC2+UFSD4_211-ATLAS-W11a-DEV_15x15

o b b b by b b L
1 2 3 4 5 6 74

N
ST

Flex adapter

Module
card




Production of LGAD sensors
* HGTD project of ATLAS needs > 20,000 LGAD sensors (6.4 m?)

e 2023 LGAD developed by IHEP got all the share of the order from CERN tendering
* >10,000 LGAD (54%, will be produced by IME according to IHEP design)
* Compete with HPK, FBK et al. and win the CERN tendering

* The current share of the contribution of the LGAD sensors in ATLAS HGTD

e |HEP-IME: 78% (54% from CERN tendering+24% in-kind contribution)
CNM: 12% in-kind contribution

USTC-IME: 10% in-kind contribution

Two Chinese vendor (IHEP/USTC) has more than 88% share Share of production
between vendors
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LGAD development for CEPC time of flight detector: Motivation

« CEPC will produce 10?2 Z boson at Z pole: Rich flavor physics program
» Particle separation problems of Gas detector (dE/dx) for CEPC flavor physics:

- 0.5-2 GeV for K/pi separation, >1.5 GeV for K/p separation

= CEPC International Advisory Committee: one of the key recommendations

Precision timing detector should be determined as a matter of urgency (4D track)
= Timing detector is complementary to gas detector: improves the separation ability

0 - 4 GeV for K/pi separation, 0 — 8 GeV for K/p separation
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Other LGAD-based TOF detector proposal

 Electron-lon Collider (EIC) :
e QOuter layer of Tracker and TOF detector
e Central detector(ETTL, CTTL, FTTL), Far-Forward detector AC-LGAD

 REDTOP: LGAD tracker
e 4D tracking reconstruction for multihadron rejection

EIC: AC LGAD-based
Outer layer of Tracker and TOF detector

Barrel AC-LGAD detector

Hadron endcap AC-LGAD detector

REDTOP: LGAD tracker

Optical-TPC
For slow background rejection
or
LGAD Tracker surrounded by Quartz
cells
For 4D track reconstruction and TOF
measurements




CEPC timing detector: Concept

* CEPC time of flight detector based on LGAD (EIC proposed LGAD-based TOF detector )
* Area of detector ( Barrel : 50 m?, Endcap 20 m? ), ~ 10° channels
 Strip-like sensor ( each strip: 4cm x 0.1 cm)
* Should be part of SET (silicon wrapper layer outside TPC or drift chamber)
* Serve as Timing detector and part of the tracker
* Timing resolution: 30-50 ps
 Spatial resolution: ~ 10 pm

CBaseline detector concept in CDR
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ATLAS HGTD VS CEPC TOF detector

» ATLAS HGTD technology may need to adjust a bit to be used in CEPC
» Need to develop large-area pad/strip LGAD sensor for CEPC application
» Reduce the dead area between channels (AC-LGAD development)

| ATLASHGTD CEPC TOF

Area (m?) 6.4 ~70

Granularity mm? ~ cm?
(1.3 mm x1.3mm) (4cm % 0.05cm)

Channel number ~ 3.6 X 10° ~ 3.5X10°

Module assembly Bump bonding Wire bonding at strip
MIP Time resolution 30-50 ps 30-50 ps

Spatial resolution ~ 300 um ~ 10 um

Dead area between ~50um no dead area



The Large-pad LGAD

Time resolution test of large aera LGAD: ~50 ps 5*5 Large area LGAD sensor
Connected by wire bonding

e Area for one channel : 6.5 mm x 6.5 mm

e 5 x5 LGAD connected by wire bonding
— To mimic the large aera LGAD

e This result is before any sensor optimization for CEPC

100 ¢

95
- 5X5 LGAD
9 F

85 [
80 f
75 E
70 £

Timing resolution [ps]

65 E

55 F
50 :I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

150 160 170 180 190 200 210 220
Bias voltage [V]




AC-LGAD introduction

AC-LGAD: two layout schemes for AC—pads
(No dead area between channels)

15X 15 LGAD for ATLAS HGTD project

ATLAS HGTD

Pixels AC-LGAD:
- Position information: 1 layer (x,y)

e Dead zone : 0. 1mm . Bump bonding

e Pixel size: 1.3mm

Strips AC-LGAD:.
Smaller Pixel size -> Lower fill factor - Position information: 2 layers for (x,y)
« Lower readout electronics density, no bump bonding

mzli@ihep.ac.cn




IHEP AC-LGAD R & D

Pixels AC-LGAD: Strips AC-LGAD:

e Position information: 1 layer e Position information: 2 layer

* Pitch size 2000um, pad size 1000um e Strip length 5.6mm, width 100um
e Different N+ dose : * Different Pitch size:

e 10P, 5P, 1P, 0.5P, 0.2P * 150um. 200um. 250um
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Spatial resolution of AC-LGAD

 Laser test result of strip AC-LGAD sensor
* It can reach about ~10um resolution with 150um pitch strip detector
* While timing resolution of AC-LGAD is still can reach 30-50ps
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Resolution [um]

Spatial resolution of AC-LGAD

> Aim for "10um spatial resolution (1D) with 4cm X 0.05cm strip size (500 pm pitch )
» It is possible to achieve that with AC-LGAD strip detector

» While keeping 30-50 ps timing resol*tion

Spatial resolution Vs. pitch size

Spatial resolution for pixels with different geometries as a function of Metal-Pitch
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[1]M. Mandurrino et al., “Demonstration of 200-, 100-, and 50-um pitch Resistive
AC-Coupled Silicon Detectors (RSD) with 100% fill-factor for 4D particle tracking”,
IEEE Electron Device Lett. 40(11), 1780-1783 (2019), DOI:
10.1109/LED.2019.2943242

[2] A. Apresyan, et al., Measurements of an AC-LGAD strip sensor with a 120 GeV
proton beam, Journal of Instrumentation, 15 (2020) P09038, 2020.

Spatial resolution Vs. pitch size
(by IHEP, FBK and BNL )

Pitch size  Spatial resolution ~ Time resolution

Sensors [um] [um] [ps]
[HEP AC-LGAD 2000 15 22 (laser)
FBK AC-LGAD 500 11 32 (laser)
BNL AC-LGAD 100 - 45 (beta source)




Ssummary

* LGAD developed by IHEP and USTC was chosen to be used in ATLAS upgrade

* First Chinese silicon sensor used at LHC

e AC-LGAD developed for CEPC
* TOF and outer layer of tracker
* cm?level granularity
* No dead area

e Spatial resolution can reach 10 um level



Ssummary

Although irradiated at fluences of 2.5X10% ny,/cm?, the LGADs were operated at voltages below 550 V (safe region of
the Single Event Burnout)

Under these conditions, IHEP-IME LGADs achieved the objectives of:
* Collected charge of more than 4 fC while guaranteeing an optimum time resolution below 70 ps
* An efficiency larger than 95% uniformly over sensors’ surface is obtained with a charge threshold of 2 fC

IHEP-IME will contribute 78% LGAD sensors(54% from CERN tendering+24% in-kind sensors) in the HGTD project

For the CEPC ToF study, two concept designs were mentioned
A. Pure ToF with only time information:
v" Aim 20 ps
v The time resolution of large area LGAD is about 56 -100 ps in Beta test. Need optimization in the future
B. ToF with track information:
v' Aim20ps, 10pum

v the time resolution and spatial resolution of AC-LGAD could be 22~25ps and 15 um according to the laser test




Laser test result of AC-LGAD
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LGAD sensor Performance at test beam

* Test beam @DESY and @SPS in 2021 (setup)
* CERN North Area SPS H6A beamline (120 GeV pion beam)
* DESY T22 beamline (5 GeV e-beam)
* Tracking Use of beam telescopes for tracking (EUDET-type 10 um/MALTA 5um)

* Time reference: LGAD (CNM 0) used as a time reference in some tests (CERN SPS)
as well as a SiPM device (DESY)

: =
any thanks to the MALTA team!
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LGAD performance in the test beam
After fluences of 2.5X 10> n.,/cm?, the LGADs were operated at voltages below 550 V

* Under these conditions, LGADs with shallow carbon achieved the objectives of:
Collected charge of more than 4 fC
* while guaranteeing an optimum time resolution below 70 ps
An efficiency larger than 95% uniformly over sensors’ surface is obtained
These results confirm the feasibility of an LGAD-based timing detector for HL-LHC
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https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05005

ALTIROC : Fast Timing ASIC

e 225 front-end channels in ALTIROC, each channel has
* A preamplifier followed by a discriminator:
* Two TDC (Time to Digital Converter) to provide digital Hit data
* Time of Arrival (TOA) : Range of 2.5 nsand a bin of 20 ps (7 bits)  _____// '\ Discriminator
e Time Over Threshold (TOT) : range of 20 ns and a bin of 40 ps (9 bits) B

Edge
Threshold

o
* One Local memory: to store the 17 bits of the time measurement until LO/L1 ek me
ALTIROC timing ASIC in nutshell Time walk correction with TOT
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ALTIROC testing

* Very demanding requirement of <70 ps time resolution @ 4 fC
* LGAD collected charge >10 fC (>4 fC) before (after) irradiation

* Charge injection self-calibration test in ALTIROC
e ~25 ps jitter @ 10fC
* Better than 70 ps jitter@ 4 fC
* Showing stability under radiation up to 220 Mrad total ionization dose

701

60! Spec at 4 fC

TOA RMS [ps]
S w
S ©

w
=

T ALTIROC2
—— Q=10fC ATLAS HGTD preliminary
o 0 50 100 150 200 |

Total ionizing dose [Mrad]
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ALTIROC2 full-size hybrid

* HGTD has 8032 total modules, 3.6 M channels, 6.4 m?
* A module consists of one module flex and two hybrids.
* There are six module production sites in HGTD project
* Hybrid: One LGAD sensor bump bonded to one readout ASIC (ALTIROC chip)
* Low-Gain Avalanche sensors (LGAD) (15 X 15 pads of 1.3 x 1.3 mm?)
* One Flexible -PCB (module flex) glued on top of two hybrids
* Flexible tail connected module to outer radius electronics

FLEX tail

FPC Connector

Side view
- Stiffener
B =




| > 0.03mm -0.07mm

ALTIROC2 full-size hybrid

* Full Size ALTIROC2 full-size bare by different institutes and companies
* |FAE already fabricated bare module prototype (ALTIROC2 + HPK LGAD, ALTIROC2 + FBK LGAD)
e IHEP worked with NCAP company, made prototype with ALTIROC2 + IHEP-IME v2 LGAD
* AEMtec (Germany) company made prototype with ALTIROC2 + FBK LGAD

1.3 mm

ALTIROC2 + HPK LGAD ALTIROC2 + IHEP-IME LGAD

X-ray image of full-size hybrid




Hybrid test beam result

 Hybrid functionality was validated by test beam
* The EUDET telescope is used for track reconstruction

* Sensor bias voltage is -180 V, corresponding to a charge of ~20 fC
* ASIC threshold 4.8 fC

 Close to 100% efficiency in the center of the pixel (pad)
- The gap between pixels (pads) is about 50um

ATLAS HGTD Test Beam Preliminary
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FLEX tail

Module assembly
- Jigs tools and pick-and-place machine

are in development

pjck-and-place machine

kY

Picking tool Picking dummy sensor Placing dummy sensor Picking flex

Jigs tools
, Module

Pipeline connecﬁn forv flex
Tests
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ALTIROC2 full-size hybrid

* Modules are installed and glued on support units
Challenges :machining of PEEK (flatness <200um) Support urit

Glue dots

Module

Different color represents
different support units.  Gluing modules on support units  Loading modules on support unit

Front side

1
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Heater demonstrator

Demonstrator

* Heater demonstrator
* 19 silicon heaters mounted on a single stave
* Representing modules dissipating heat
* on the cooling plate (CO2 cooling )

* DAQ demonstrator

* Minimum system for full chain readout, from
module emulator boards to FELIX board

e Support up to 14 modules with two I[pGBTs
and one VTRx+

* Timing - |
e Up to 3 modules @ 1.28Gbps v Carrier board
e o emem  UFCFPGA board

* Up to 7 modules @ 640Mbps B - S A
e Up to 14 modules @ 320Mbps e B r P )

* Luminosity
e 7 modules @ 640Mbps




Summary: HGTD detector for ATLAS phase Il upgrade

Good progress in LGAD design fulfilling the radiation hardness requirements
* Carbon enriched LGADs fulfil HGTD sensor requirements up to 2.5x10** N, /cm?
* Pre-production has started

Two round of full-size ASICs have been prototyped, so far all blocks functional

Concrete implementation of Peripheral electronics components are under test
Full-size hybrids are in production and showed good results in functional tests

Demonstrator activities ramping up

Next milestones:

e 2023: Peripheral electronics boards and LGAD sensors production started
e 2024: ASICs, Modules and detector units production started

e 2026-2027: HGTD detector Integration at CERN, installation




Backup: High Granularity Timing Detector (HGTD)

High precision timing (per-track
resolution of 35-50ps up to 4000 fb-1)
to mitigate pileup effects and improve
the ATLAS performance in the forward
region (2.4 £ |n| < 4.0)

Provide online and offline luminosity
measurements by transmitting Ny
per ASIC at 40MHz in outer region
« 2 disks (one per endcap) outside of ITk
volume, upstream of the fwd.
calorimeters, consisting of 2 double-
sided layers each
* Very limited space in z-direction -
gyirall thickness of 12.5 cm for each
is

Silicon sensor technology (LGAD)

Instrumented double-side
layers (forward & backward)

Max expected fluence in “3-ring layout”
is 2.5e15 neq/cm? and sets the
radiation hardness requirements for
the sensors and electronics




Beta source tests: LGAD timing resolution measurements

 Sr*0 Beta telescope test (collected charge, gain, time resolution)

* UCSC boards with commercial amplifier and analog readout by Oscilloscope
* Less constraints with respect to the ASICs — exploring the limits of the sensors.

 Two UCSC boards with two LGAD ‘
* One LGAD is device under test (DUT)
* Another LGAD is used to trigger electrons events from Sr°°

(a) Beta source-
20Sr

.

% 5.0 T s

& E—— il iyl
2

LGAD il

o

IS B SBOEOIOOOIOIIOIOIIIS

DUT LGAD Climatic

el B —— LGAD _LGADor ShM chamoer ~ Alignment
! ‘ Frame
' Trigger LGAD Alignipeft Rod

Signal

Readout board

§7 K7Amp|ifier

ty, trigger

n

. 3.63
Oscilloscope 6

t

Metal  Source B-Source DUT  Trigger Sensor
Support  Shield (%0Sr)




LGAD Single Event Burnout effect (HV stability in the beam)

| 800
700

600

ATLAS HGTD Preliminary

FBK-UFSD3.2 (2x2, SPS) "
survived
HPK-P2 (5x5, SPS) .

FBK-UFSD3.2 (2x2, SPS) @

SAFE ZONE
<11V/um

HPK-P1 (single, DESY) @

The line is is a fit: Vggg =K - thickness
k=12.1 V/pum

End-Of-Lifetime Test beam results 2021 (DESY, SPS)

10 20 30 40 50 60 70
thickness [um]



Peripheral board (PEB)

»PEB connects FE to the DAQ system, provides LV&HV to the modules

Modules Peripheral Electronics  pata acquisition system
Peripheral on-detector . USA15

electronics

FLEX cable

Top and bottom: 2 x 19 FLEX connectors 1880 up links Luminosity Local

v orivmlf pack-end Luminosity

A
=
IS i | l1200uplinks | Luminosity and
o i | bffline readout trigger event data |
3 DCI/DC Converters ~270 B
| | | | | | | | | (FEAST2) FELIX Central DAQ
v event size 190 kB

< » E 1200 down links
- 20 cm 4 ' slow control (125-250 kB)




Full size LGAD sensor prototype

* Good uniformity of full size LGAD prototype (15*15 channels)

e |HEP-IME, USTC-IME,HPK, FPK, CNM has produced good full-size LGAD prototype.
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Peripheral electronics board (PEB)

12C slow control
< —>

Trigger, clock, fast commands

* Work on the characterization of all individual
components, prototypes under production:

* Detailed testing of the DC/DC converter (bPOL12V),
different options under consideration

— need to fulfil space constraints, power efficiency
measured

e Started tests on IpGBT with evaluation board

» VTRX+: successfully tested 2.56G/10.24G

communication, bit error rate (<1012), passed eye
diagram test

FLEX

Main data stream, Monitoring

Luminosity data stream @40 MHz :

 MUX64: analogue multiplexer (for monitoring of ASIC
power supply and temperature)

- basic functionality confirmed, On-resistance larger than
expected (further investigations necessary)

|pGBT eval. board

<
<o

MUX64 in QFN88



HGTD Mechanics and service
* Hermetic vessel and on-detector cooling passed SPR review

* Cooling plate with CO2 loops design and prototyping in good Progress

e Quter ring in progress: Challenging tight junction design with lots of feed-through

Thermal simulation of cooling system Overall view with mechanics mm |te

CO, transfer lines & External

Half-disk heat loaded interconnection Box Moderator
@ -35°C coolant

Instrumented doyble-side
layers (forward & backward)

Back cover

Internal
Moderator

\ = “‘\“ T‘ .
q Inner Ring W

K Y

L| Eccentric [¢®
flange 5

j | : ol

Fire-retardant
shielding

Outer ring

Front Cover & anti- fire retardant Liquid Argon
condensation heaters shielding EndCap Cryostat




ALTIROC1 mini-modules performance at test beam

* 5*5 channels Mini-modules (ALTIROC1+LGAD) was tested at testbeam
* 46ps timing resolution after time walk correction

LGAD Landau 25 ps the reason for part of the high
jitter found
Jitter+system/internal 37 ps | 26 (known reasons)
clock+time walk residual
ALTIROC1 mini-modules @ test beam TDC clock 7ps | Total resolution:
‘ - - 36 ps (likely achievable for
Per hit total 46 ps | 20fC)/ 70 ps for (4 fC)

Before Correction: ¢, =58.3 + 1.6 ps

250
B After Correction: o, = 46.3 + 1.4 ps
- ATLAS HGTD
200 — Test Beam
........... - November 2019
150—

Timing resolution
100 .

50

9662360 —2oo 2100 0 100 200 300 400

- A(TOAL__ ) [ps] |



Why need the time information?

At High Luminosity -LHC

* Pileup: <u>= 200 interactions per bunch crossing ~1.6 vertex/mm on average

Problems of the vertex reconstruction in ATLAS

- degradation significantly in the forward region compared to the central region

* Need zg resolution < 0.6 mm
* Liquid Argon based electromagnetic calorimeter has coarser granularity
* New inner tracker (ITk) has poor z resolution in the forward region

Using timing information easier to reconstruct vertices

Timing information is necessary for the HL-LHC

HGTD

>
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Hybrid tests

* Tests on-going of ALTIROC2 using dedicated PCB and interface board

200

150

TOA RMS [ps]
(=]
o
o

e ASIC-only and ASIC+LGAD tests after hybridization

* Sr90 and testbeams performed with bare modules

« Jitter as function of charge with ALTIROC2 ASIC alone and ASIC+LGAD with at least ==
all TZ preamplifier channels enabled

* Performance at low charge understood due to parasitic inductances separating
sensor/ preamplifier grounds

Jitter (with std error) for one TZ pixel versus input charge.

=
ATLAS HGTD preliminary t  ASIC+HPK LGAD, All TZ ON, Pixel 165 2 14
ALTIROC2 t  ASIC alone, All matrix ON, Pixel 122
a=162 ps.fC floor=9 ps Fitjitter = \/ (§)? + floor 12
---. Simu analog front-end post-layout view Cd=4pF ‘
(with LGAD-like calib. pulse + assuming 10 ps Rj PLL 10
+ ignoring jitter from TDC/quantization)

____________
L D DL P PR SR . S

4 6 8 10 20 0 2 4 6 8 10 12 14
Q [fC] column




ALTIROCR & D

ALTIROCO — preamplifier + discriminator waveform sampling on the oscilloscope

ALTROC1- 5x5 array with complete analogue front end (discriminator + TDC)

ALTIROC2- 15x15 array with almost complete functionalities
* First Full-size ASIC prototype ~2x2 cm? with 225 readout channels

ALTIROC3- 15x15 array with complete functionalities
* Digital-on top design, fix on TDC (TOT/TOA), radiation hard design

b4l ‘x)u \
LRI



