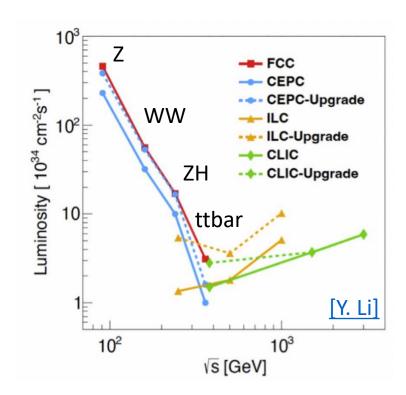


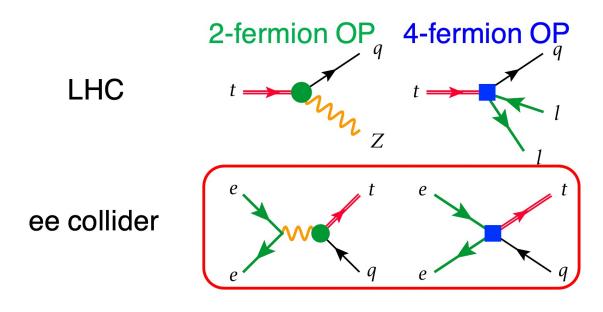
Top quark FCNC at CEPC


Liaoshan Shi (University College London)

CEPC Flavor Physics/New Physics/Detector Technology Workshop 16 August 2023 @ Fudan University

Based on on arXiv:1906.04573 with Cen Zhang

Introduction


- CEPC is proposed to run as a Higgs factory at 240 GeV.
- Can potentially upgrade to run at 360 GeV to produce ttbar for top quark physics.
- Can we do some top quark physics below the ttbar production threshold?
 - The Top FCNC interactions can be probed via single top production at 240 GeV.

Top FCNC

- Top FCNC interactions are highly suppressed in SM by GIM mechanism.
 - Any observation will be a clear sign of new physics.
- FCNC can happen via 2-fermion or 4-fermion interactions:

	Br SM		
$egin{array}{c} t ightarrow cg \ t ightarrow c\gamma \ t ightarrow cZ \ t ightarrow ch \end{array}$	$\sim 10^{-11} \ \sim 10^{-12} \ \sim 10^{-13} \ \sim 10^{-13} \ \sim 10^{-14}$		

Current constraints

[HL/HE YR, 1812.07638]

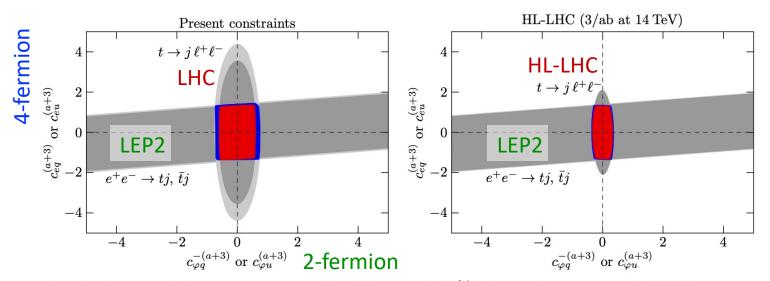


Fig. 59: Current (left) and prospective HL-LHC (right) 95% C.L. limits on top-quark FCNC operator coefficients in a two-dimensional plane formed by two- (x axis) and four-fermion (y axis) operator coefficients. Other parameters are marginalized over, within the constraints obtained when all measurements are included. Red and blue regions are the combined constraints for top-up and top-charm FCNCs. The impact of $t \rightarrow j\ell^+\ell^-$ and $e^+e^- \rightarrow tj, \bar{t}j$ measurements is displayed separately in dark and light gray colors for top-up and top-charm FCNCs, respectively.

- Best constraints on 2-fermions FCNC are from LHC.
- Best constraints on 4-fermion (eetq) FCNC are still from LEP2.

Flavour changing effective operators

- Consider a complete set of coefficients describing the top FCNC interactions based on SMEFT implemented in the <u>dim6top</u> UFO model.
- In total 56 independent coefficients are relevant in single top production process.

2-fermion FCNC

4-fermion FCNC

$egin{aligned} \widehat{c_{arphi q}^{-(3+a)}} \ \widehat{c_{arphi u}^{(3+a)}} \ \widehat{c_{arphi u}^{-I(3+a)}} \ \widehat{c_{arphi q}^{-Q}} \ \end{array}$	$c^{(a3)}_{uZ} \ c^{(3a)}_{uZ} \ c^{I(a3)}_{uZ} \ c^{I(a3)}_{uZ}$	$\begin{array}{ccc} c_{uA}^{(a3)} & c_{lq}^{-(1,3+a)} \\ c_{uA}^{(3a)} & c_{lu}^{(1,3+a)} \\ c_{uA}^{I(a3)} & c_{lu}^{-I(1,3+a)} \\ c_{uA}^{-I(1,3+a)} & c_{lq}^{-I(1,3+a)} \end{array}$	$c_{eq}^{(1,3+a)} \ c_{eu}^{(1,3+a)} \ c_{eu}^{I(1,3+a)} \ c_{eq}^{I(1,3+a)}$	$c^{S(1,a3)}_{lequ} \ c^{S(1,3a)}_{lequ} \ c^{S(1,3a)}_{lequ} \ c^{SI(1,a3)}_{lequ}$	$c_{lequ}^{T(1,a3)} \ c_{lequ}^{T(1,3a)} \ c_{lequ}^{T(1,3a)} \ c_{lequ}^{TI(1,a3)} \ c_{lequ}^{TI(1,a3)} \ c_{lequ}^{TI(1,a3)}$
$c^{I(3+a)}_{arphi u}$	$c_{uZ}^{I(3a)}$	$c_{uA}^{I(3a)}$ $c_{lu}^{I(1,3+a)}$	$c_{eu}^{I(1,3+a)}$	$c_{lequ}^{SI(1,3a)}$	$c_{lequ}^{TI(1,3a)}$

Quark generation index: a=1 for $ee \rightarrow tu$, a=2 for $ee \rightarrow tc$

Flavour changing effective operators

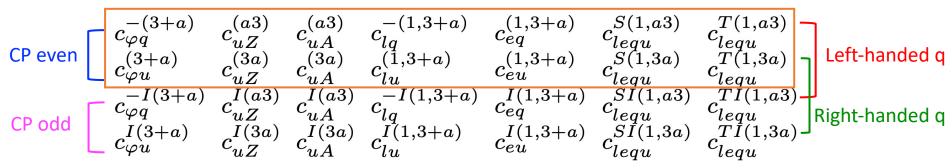
- Consider a complete set of coefficients describing the top FCNC interactions based on SMEFT implemented in the <u>dim6top</u> UFO model.
- Interference between rows vanishes in the limit
 In total 56 independent of massless quark.
 Production process. → Sufficient to focus on 7 parameters at a time.

2-fermion FCNC

4-fermion FCNC

$c_{\varphi q}^{-(3+a)}$	$c_{uZ}^{(a3)}$	$c_{uA}^{\left(a3 ight) }$	$c_{lq}^{-(1,3+a)}$	$c_{eq}^{(1,3+a)}$	$c_{lequ}^{S(1,a3)}$	$c_{lequ}^{T(1,a3)}$
$c^{(3+a)}_{arphi u}$	$c_{uZ}^{(3a)}$	$c_{uA}^{(3a)}$	$c_{lu}^{(1,3+a)}$	$c_{eu}^{(1,3+a)}$	$c_{lequ}^{S(1,3a)}$	$c_{lequ}^{T(1,3a)}$
$c_{arphi q}^{-I(3+a)}$	$c_{uZ}^{I(a3)}$	$c_{uA}^{I(a3)}$	$c_{lq}^{-I(1,3+a)}$	$c_{eq}^{I(1,3+a)}$	$c_{lequ}^{SI(1,a3)}$	$c_{lequ}^{T \widehat{I}(1,a3)}$
$c^{I(3+a)}_{arphi u}$	$c^{I(3a)}_{uZ}$	$c_{uA}^{I(3a)}$	$c_{lu}^{I(1,3+a)}$	$c_{eu}^{I(1,3+a)}$	$c_{lequ}^{S I(1,3a)}$	$c_{lequ}^{T {ar I}(1,3a)}$

Quark generation index: a=1 for $ee \rightarrow tu$, a=2 for $ee \rightarrow tc$

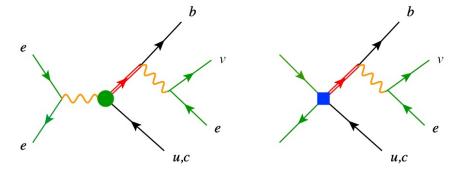

Flavour changing effective operators

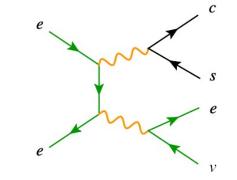
- Consider a complete set of coefficients describing the top FCNC
- 1st and 3rd row (or 2nd and 4th row) only differ by a CP phase and give identical signature.
 1st and 2nd row (or 3rd and 4th row) give slightly different kinematics because lepton momentum from top quark decay
- In total 56 independent coefficients ais correlated with the top helicity.

 \rightarrow Only need to consider the first two rows in the analysis.

2-fermion FCNC

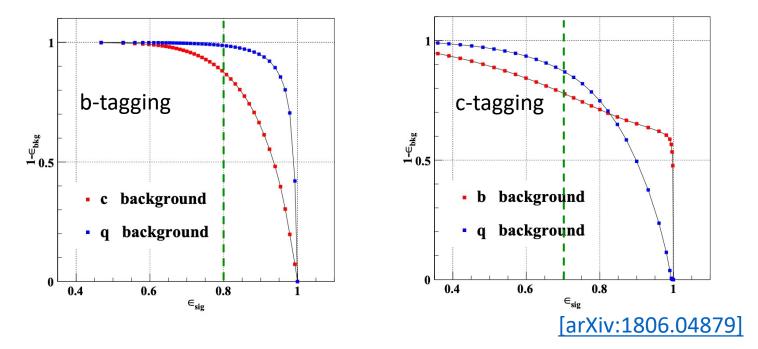
4-fermion FCNC

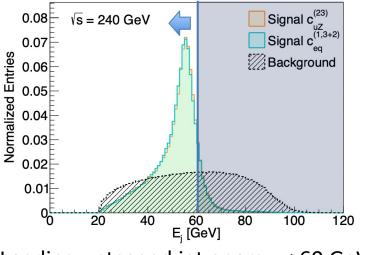



Quark generation index: a=1 for $ee \rightarrow tu$, a=2 for $ee \rightarrow tc$

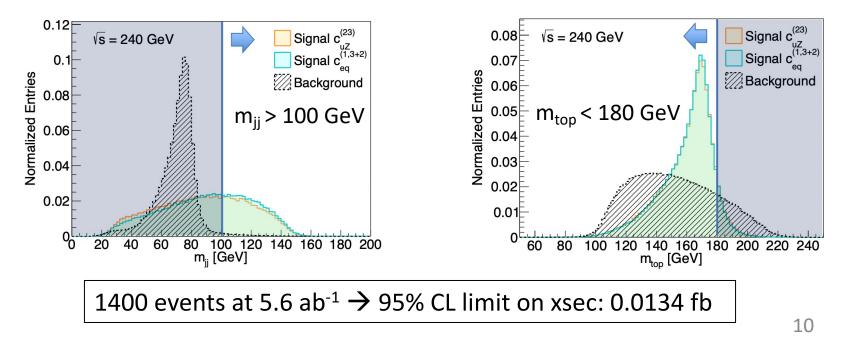
Analysis setup – event generation

- CEPC (CDR) scenario: E_{cm} = 240 GeV, L_{int} = 5.6 ab⁻¹
- Only consider leptonic delay of the W boson from the top quark.
- Event generation: leading order with MadGraph5 + Pythia8:

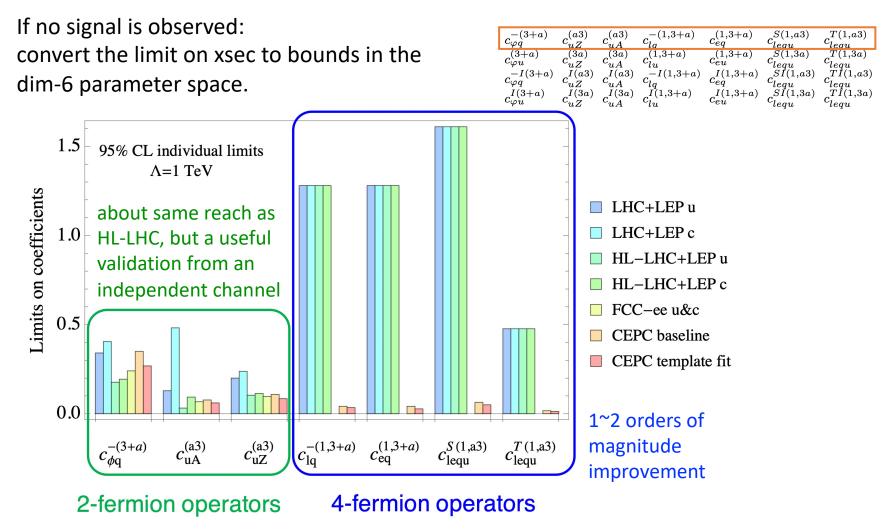

Signal (dim6top model): $ee \rightarrow tj \rightarrow lvbj$ (l = e, mu; j = u, c) Background: ee→WW→lvqq (dominant) ee→ZZ→llbb/llcc (small contribution)


Analysis setup – simulation

- Fast simulation: Delphes with <u>CEPC card</u>
 - Jet clustering: anti-kT R=0.5
 - b-tagging working point 80% (c-jet mistag 10%, light jet mistag 0.1%)
 - c-tagging working point 70% (b-jet mistag 20%, light jet mistag 12%)

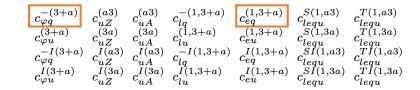


Baseline analysis


- Object and event selection:
 - Exactly 1 lepton pT>10 GeV, |eta|<3.0
 - Missing energy > 30 GeV
 - ≥2 jets pT>20 GeV, |eta|<3.0
 - Exactly 1 b-tagged jet

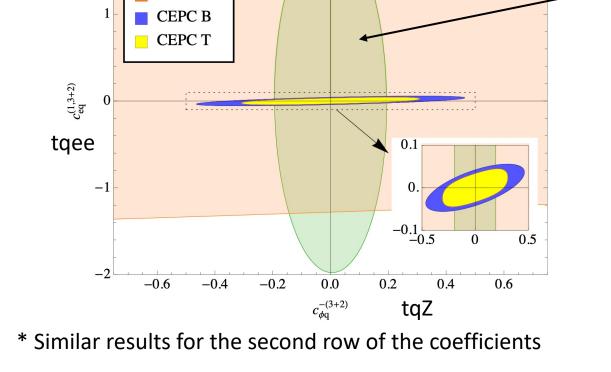
Leading untagged jet energy < 60 GeV

Constraints on individual operators


* Similar results for the second row of the coefficients

Constraints on 2f VS 4f operators

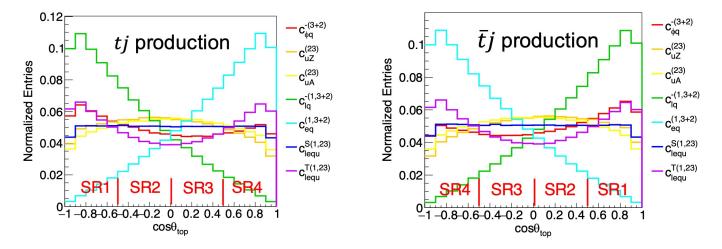
If no signal is observed: convert the limit on xsec to bounds in the dim-6 parameter space.


HL-LHC

LEP2

Probe parameter space that will be left uncovered by the HL-LHC

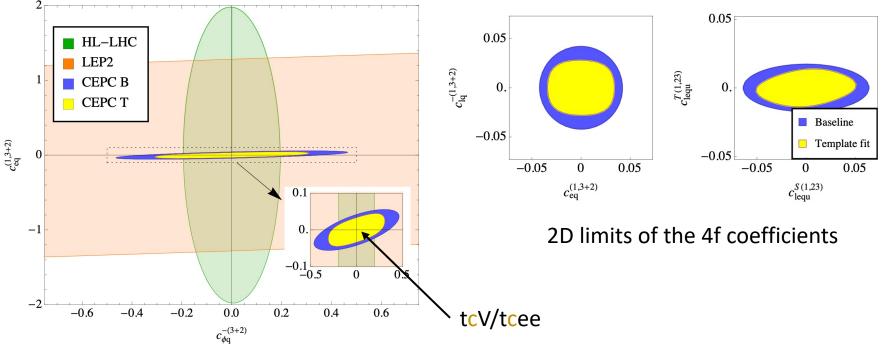
Complementary between HL-LHC and CEPC



Improvement with additional discriminators

 Introduce additional discriminators to improve sensitivity on top of the baseline analysis (denoted as "template fit"):

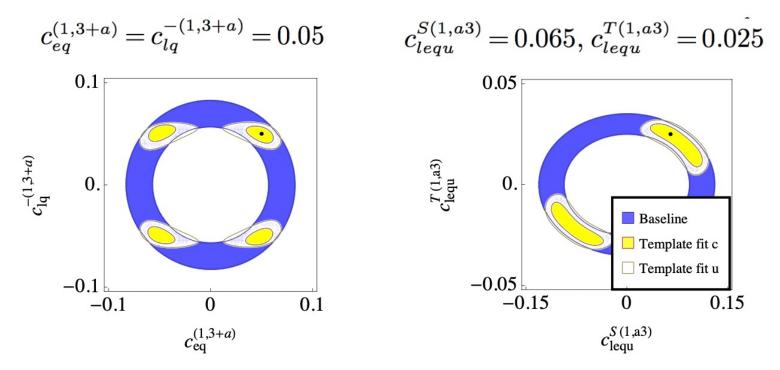
charm tagging + 4 bins in $Q_l \times cos\theta_{top}$


- c-jet tagging on non-b-tagged jet to improved sensitivity to ee→tc signal produced by a=2 operators (i.e. tcV/tcee).
- **Production angle** of the top quark to distinguish signal produced by operators with different Lorentz structures.

Using c-jet tagging

If no signal is observed:

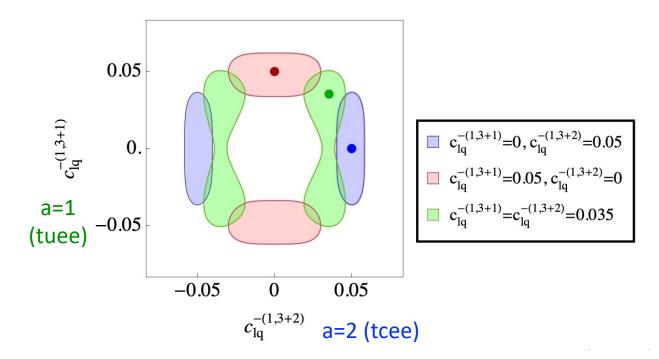
convert the limit on xsec to bounds in the dim-6 parameter space.



2D limit of a 2f and a 4f coefficients

• c-jet tagging improves the constraints of the operator coefficients for a = 2.

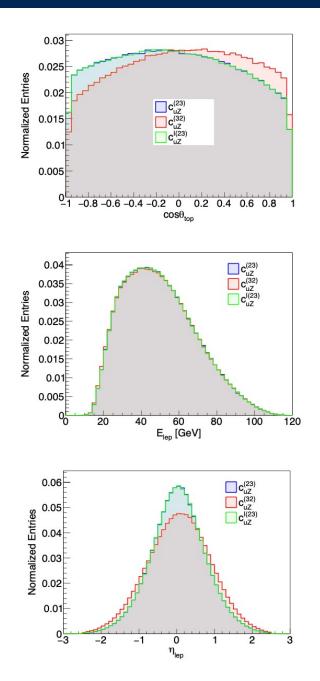
Using angular observable

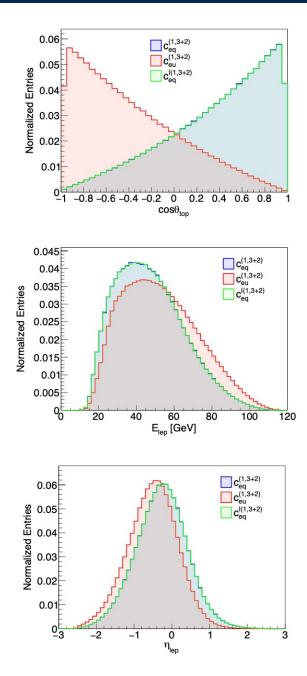

If there is an excess – two hypotheses are considered:

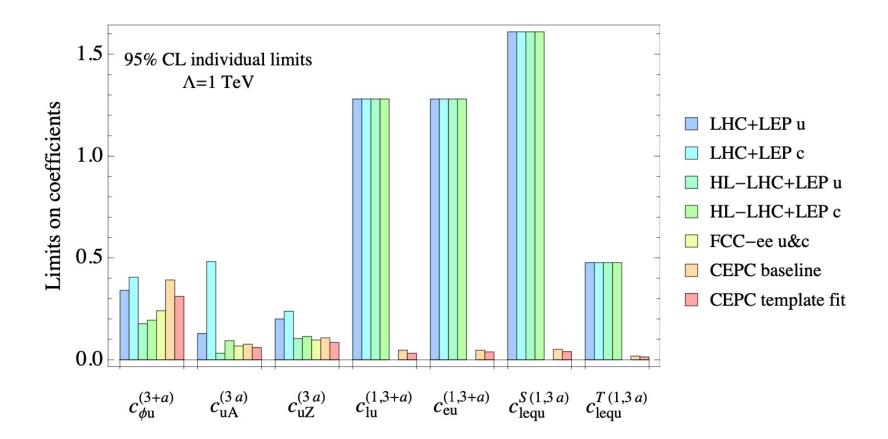
- The angular observable helps to pinpoint the coefficient.
- Benefit from the c-tagging, better precision is obtained for operators involving a charm quark (i.e. a=2)

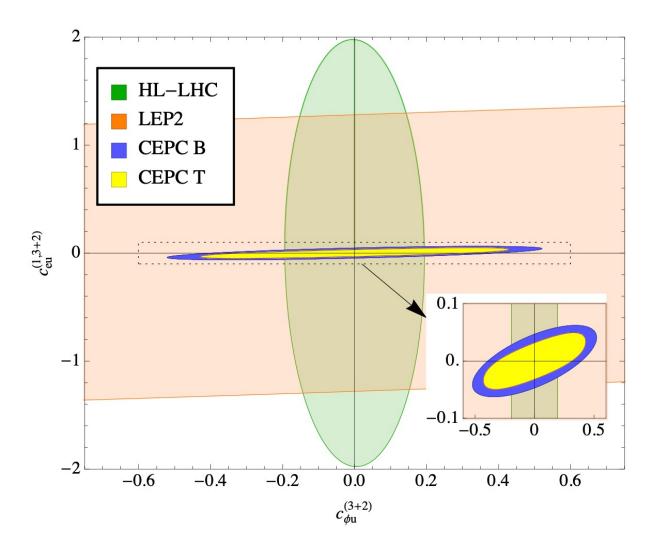
Using c-jet tagging

If there is an excess – three hypotheses are considered:


- 2D limits on a 4f coefficient with a=1 and a=2.
- c-jet tagging helps to identify the quark flavour involved in the FCN coupling.


Conclusion


- CEPC, prosed as a Higgs factory, is also an ideal machine to test the top-quark flavour-changing interactions.
- In particular as a ee collider it has very good sensitivity on 4fermion operators, and will explore the parameter space not covered by HL-LHC.
- Estimation of the sensitivity of CEPC @ 240 GeV based on the CDR scenario looks promising.
- c-tagging and angular observable can further improve the sensitivity and helps to pinpoint the coefficients if there is an excess.



BACKUP

