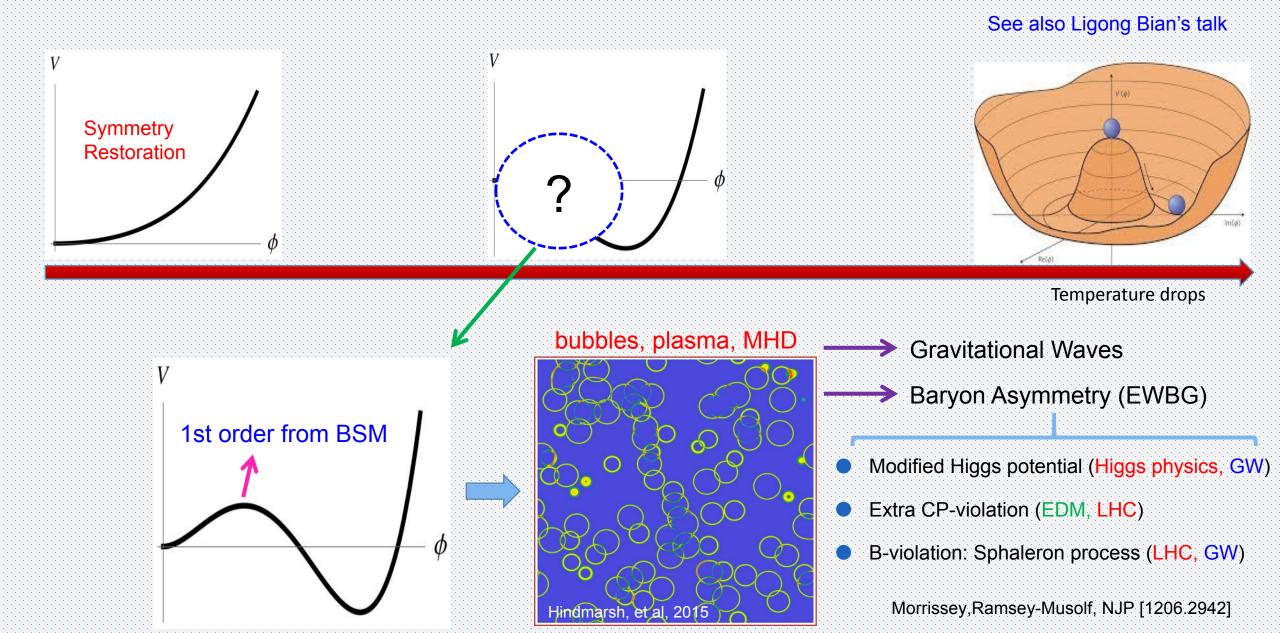


Collider and Gravitational Wave Complementarity in Probing the Electroweak Phase Transition

Huaike Guo (郭怀珂)

UCAS (ICTP-AP)

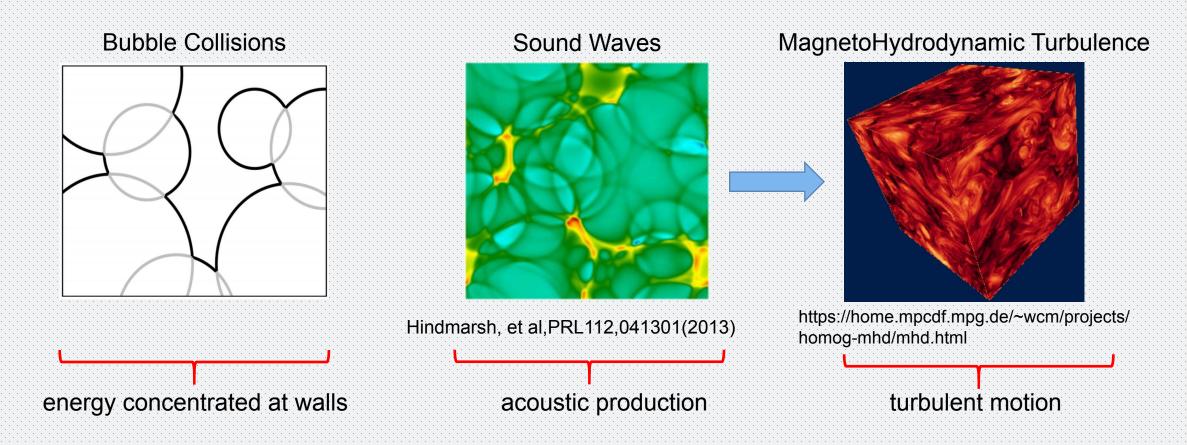

2023-8-16

Ghosh, HG, Han, Liu, JHEP [2012.09758]
Alves, Goncalves, Ghosh, HG, Sinha, PLB [2007.15654]
Alves, Goncalves, Ghosh, HG, Sinha, JHEP [1909.05268]
Alves, Ghosh, HG, Sinha, Vagie, JHEP [1812.09333]
Alves, Ghosh, HG, Sinha, JHEP [1808.08974]
Zhou, Bian, HG, PRD [1910.00234]
HG, Li, Liu, Ramsey-Musolf, Shu, PRD [1609.09849]

CEPC味物理-新物理和相关探测技术研讨会

Electroweak Phase Transition

Collider and Gravitational Wave Complementarity


See also Yun Jiang, Wei Liu, Wei Su's talks

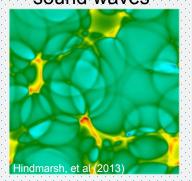
- Collider and GW work towards a common goal
- Correlation and complementarity in their roles

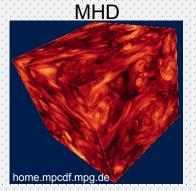
Detection of early-universe gravitational-wave signatures and fundamental physics Robert Caldwell, Yanou Cui, Huai-Ke Guo, Vuk Mandic, Alberto Mariotti, Jose Miguel No, Michael J. Ramsey-Musolf, Mairi Sakellariadou, Kuver Sinha, Lian-Tao Wang, Graham White, Yue Zhao, Haipeng An, Ligong Bian, Chiara Caprini, Sebastien Clesse, James M. Cline, Giulia Cusin, Bartosz Fornal, Ryusuke Jinno, Benoit Laurent, Noam Levi, Kun-Feng Lyu, Mario Martinez, Andrew L. Miller, Diego Redigolo, Claudia Scarlata, Alexander Sevrin, Barmak Shams Es Haghi, Jing Shu, Xavier Siemens, Danièle A. Steer, Raman Sundrum, Carlos Tamarit, David J. Weir, Ke-Pan Xie, Feng-Wei Yang & Siyi Zhou Show fewer authors General Relativity and Gravitation 54, Article number: 156 (2022) | Cite this article

Contents	Snowmass 2021 Whitepaper, GRG [2203.0	7972]
1 Introduction		3
2 Early Phases in t	the Evolution of the Universe	4
3 Phase Transition	\mathbf{s}	8
4 Topological Defe	cts	13
5 Dark Matter	Session leads: Michael Ramsey-Musolf and Lian-Ta	ao Wang
6 Complementarity	between Collider and GW Observations	19
6.1 Electroweak P	Phase Transition	20
6.2 Theoretical Re	obustness	24
6.3 Other Phase T	Transitions	25
7 Correlating GW	Background with EM Observations	26

Gravitational Wave Sources

New observables: primordial magnetic field, scalar perturbations, anisotropy, primordial black hole...


Di, Wang, Zhou, Bian, Cai, Liu, PRL 126 (2021) 25, 251102 Jing, Bian, Cai, Guo, Wang, PRL 130 (2023) 051001 Li, Huang, Wang, Zhang, PRD 105 (2022) 083527 Huang, Xie, PRD105 (2022) 11, 115033, JHEP 09 (2022) 052


The GW Observables

bubble collision

sound waves

$$\Omega_{\rm coll}(f)h^2 = 1.67 \times 10^{-5} \Delta \left(\frac{H_{
m pt}}{eta}\right)^2 \left(\frac{\kappa_\phi \alpha}{1+lpha}\right)^2 \times \left(\frac{100}{g_*}\right)^{1/3} S_{
m env}(f),$$

$$\Omega_{\rm sw}(f)h^{2} = 2.65 \times 10^{-6} \left(\frac{H_{\rm pt}}{\beta}\right) \left(\frac{\kappa_{\rm sw}\alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{*}}\right)^{1/3} \times v_{w} \left(\frac{f}{f_{\rm sw}}\right)^{3} \left(\frac{7}{4+3(f/f_{\rm sw})^{2}}\right)^{7/2} \Upsilon(\tau_{\rm sw}),$$

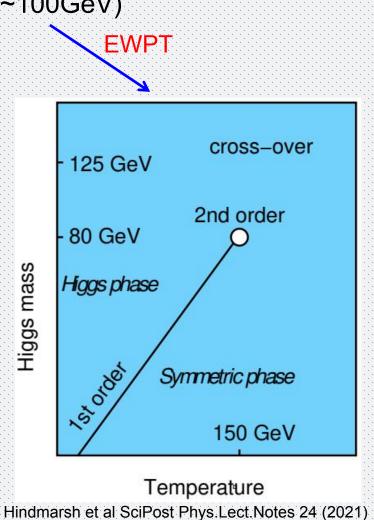
Energy density Spectrum

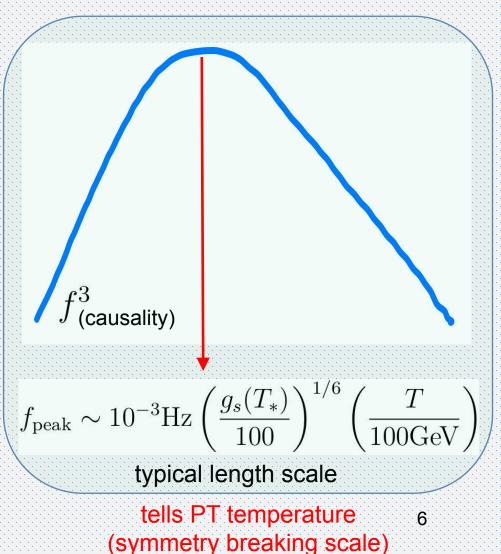
$$\Omega_{\rm GW}(f) = \frac{d\rho_{\rm GW}}{\rho_c d\log f}$$

$$\Upsilon = 1 - (1 + 2\tau_{\rm sw}H_{\rm pt})^{-1/2} \ \ ({\rm RD})$$
 HG,Sinha,Vagie,White, JCAP [2007.08537]

adopted by LIGO, NANOGrav, etc.

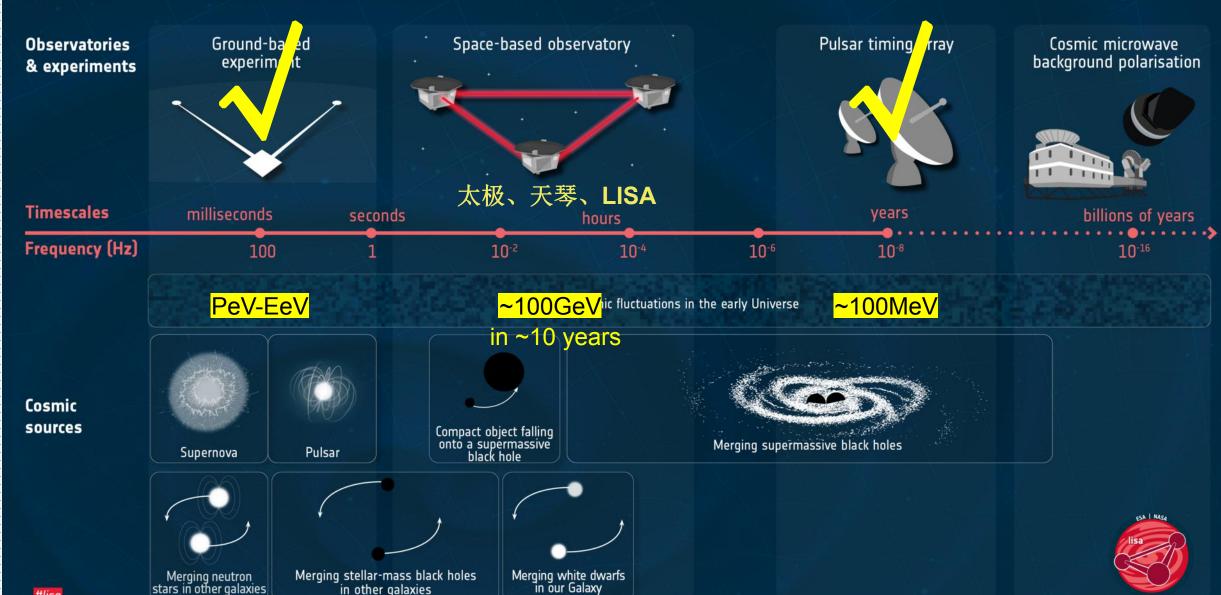
$$h^2 \Omega_{\text{turb}}(f) = 3.35 \times 10^{-4} \left(\frac{H_*}{\beta}\right) \left(\frac{\kappa_{\text{turb}} \alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_*}\right)^{1/3} v_w S_{\text{turb}}(f)$$


Generic Features


LIGO (~100Hz) : (~PeV - EeV)

LISA, Taiji, Tianqin: ~mHz : (~100GeV)

PTA: nHz (~100MeV)



THE SPECTRUM OF GRAVITATIONAL WAVES

#lisa

stars in other galaxies

in other galaxies

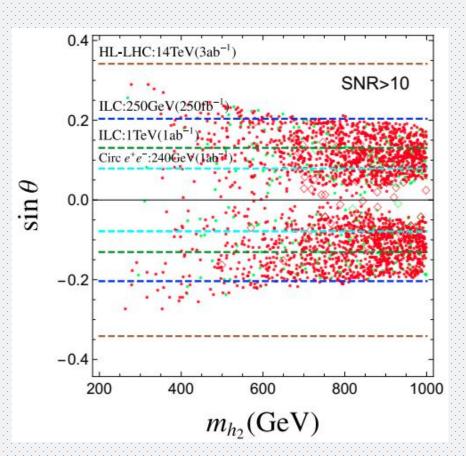
BSM studies

Chung, Long, Wang, PRD [1209.1819]

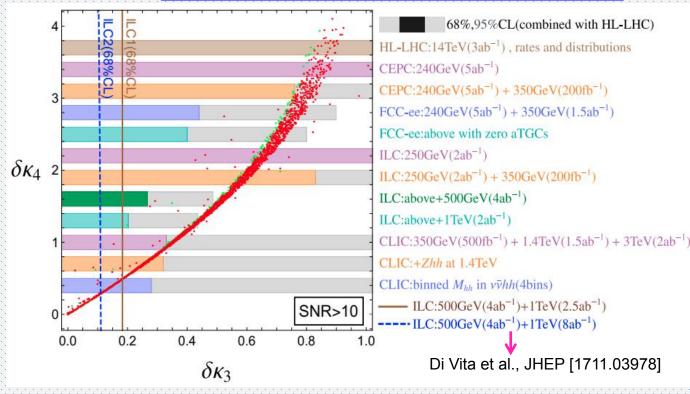
- Large cubic term from thermal corrections (loop level)
- Add new scalars (tree level)
- Including non-renormalizable operators

EFT approach: Cai, Hashino, Wang, Yu [2202.08295] Global fit: Du, NPPP [2303.16400]

Models	Strong 1 st order phase transition	GW signal	Cold DM	Dark Radiation and small scale structure		
SM charged	1					
Triplet [20-22]	1	/	1	×		
complex and real Triplet [23]	1	1	1	×		
(Georgi-Machacek model)						
Multiplet [24]	/	1	1	Ĭ.		
2HDM [25-30]	1	1		×		
MLRSM [31]	1	1	×	×		
NMSSM [32–36]	1	1	1	×		
SM uncharged						
$S_r \text{ (xSM) [37-49]}$	1	1	×	×		
$2 S_r$'s [50]	1	1	1	×		
S_c (exSM) [49, 51–54]	1	/	1	×		
$\mathrm{U(1)}_\mathrm{D}$ (no interaction with SM) [55]	1	/	1	×		
$\mathrm{U(1)_D}$ (Higgs Portal) [56]	1	1	1			
$U(1)_D$ (Kinetic Mixing) [57]	1	1	1			
Composite SU(7)/SU(6) [58]	1	1	1	95-		
U(1) _L [59]	1	1	1	×		
$SU(2)_D \rightarrow global SO(3)$			1	×		
by a doublet [60–62]		5				
$SU(2)_D \rightarrow U(1)_D$			1	/		
by a triplet [63–65]		3		89		
$\mathrm{SU(2)}_\mathrm{D} o Z_2$	2		1	×		
by two triplets [66]						
$\mathrm{SU(2)}_\mathrm{D} o Z_3$			1	×		
by a quadruplet [67, 68]						
$\mathrm{SU}(2)_\mathrm{D} \times \mathrm{U}(1)_\mathrm{B-L} \to Z_2 \times Z_2$			1	×		
by a quintuplet and a S_c [69]						
$SU(2)_D$ with two dark Higgs doublets [70]	1	1	×	×		
$SU(3)_D \rightarrow Z_2 \times Z_2$ by two triplets [62, 71]			1	×		
$\mathrm{SU(3)}_\mathrm{D}$ (dark QCD) (Higgs Portal) [72, 73]	1	1	1			
$G_{\mathrm{SM}} \times G_{\mathrm{D,SM}} \times Z_2$ [74]	1	/	1			
$G_{\text{SM}} \times G_{\text{D,SM}} \times G_{\text{D,SM}} \cdots$ [75]	V	1	1	20 20		
Current work		-				
$SU(2)_D \rightarrow U(1)_D$ (see the text)	/	/	1	/		


Ghosh, HG, Han, Liu, JHEP [2012.09758]

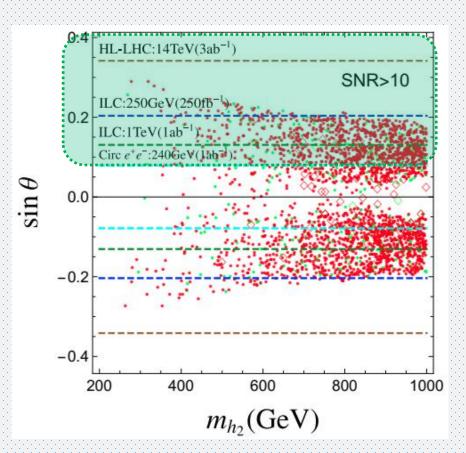
Higgs Precision Measurements


- First order EWPT achievable in simplest SM+Singlet model
- Correlation and complementarity between collider and GW probes

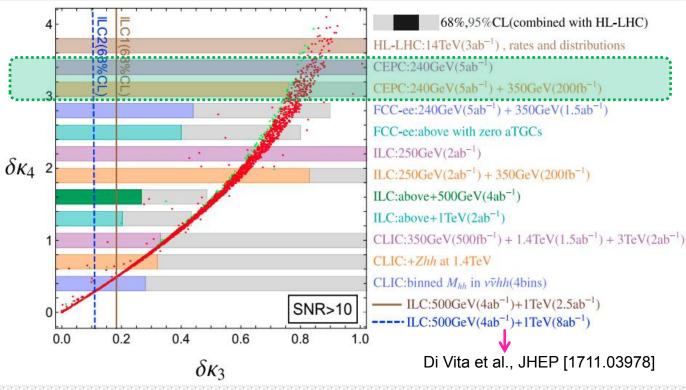
h1: the Higgs

h2: heavier scalar

$$\Delta \mathcal{L} = -\frac{1}{2} \frac{m_{h_1}^2}{v} (1 + \delta \kappa_3) h_1^3 - \frac{1}{8} \frac{m_{h_1}^2}{v^2} (1 + \delta \kappa_4) h_1^4$$


Alves, Ghosh, HG, Sinha, Vagie, JHEP [1812.09333]

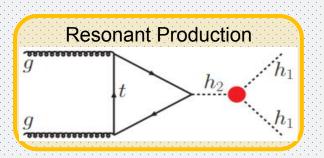
Higgs Precision Measurements

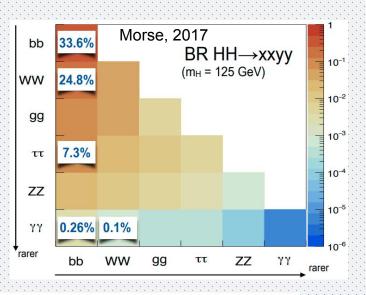

- First order EWPT achievable in simplest SM+Singlet model
- Correlation and complementarity between collider and GW probes

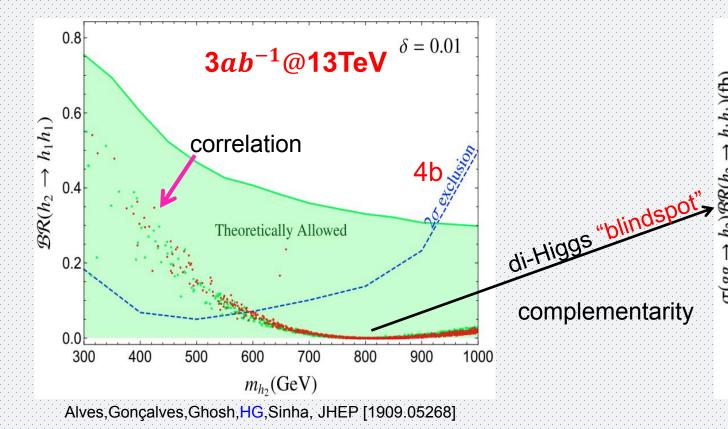
h1: the Higgs

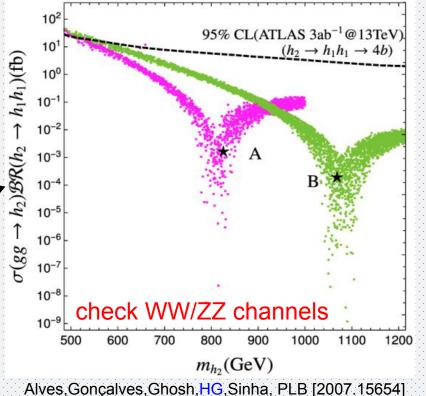
h2: heavier scalar

$$\Delta \mathcal{L} = -\frac{1}{2} \frac{m_{h_1}^2}{v} (1 + \delta \kappa_3) h_1^3 - \frac{1}{8} \frac{m_{h_1}^2}{v^2} (1 + \delta \kappa_4) h_1^4$$

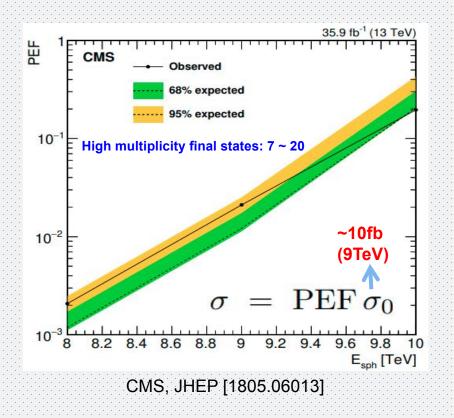

Alves, Ghosh, HG, Sinha, Vagie, JHEP [1812.09333]

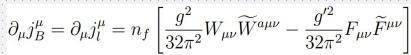

Di-Higgs Production

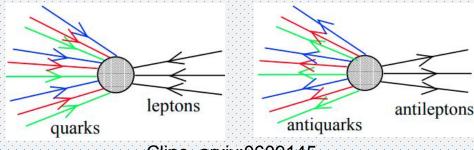

Enhanced (resonant) di-Higgs production


See also:

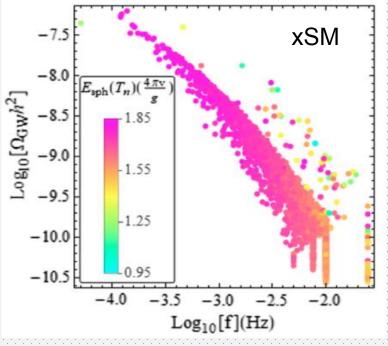
No,Ramsey-Musolf, PRD [1310.6035] Li,Ramsey-Musolf,Willocq, JHEP [1906.05289] Huang,No,Pernie,Ramsey-Musolf,Safonov, PRD [1701.04442] Zhang,Li,Liu,Ramsey-Musolf,Zeng,Arunasalam [2303.03612] Liu,Xie,JHEP [2101.10469] and more...






B-violation in the SM

A SM process


- Searchable at colliders but difficult
- B-violation at the EWPT: probable by GWs (Sphaleron)

Cline, arxiv:0609145

Zhou, Bian, HG, PRD (R) [1910.00234]

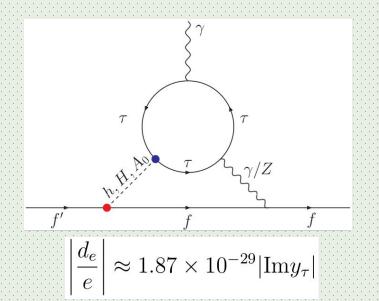
CP-Violation

Lepton-flavored EWBG

HG, Li, Liu, Ramsey-Musolf, Shu, PRD [1609.09849]

- Effective for baryon asymmetry generation
- GW less affected by the small CPV
- Definitive target for CEPC and others

With GWs: Xie, JHEP [2011.04821] and others


$-\frac{m_{\tau}}{v}\left[\operatorname{Re}(y_{\tau})\bar{\tau}\tau+\operatorname{Im}(y_{\tau})\bar{\tau}i\gamma_{5}\tau\right]h$

OK

Type III 2HDM $\mathcal{L}_{\text{Yukawa}}^{\text{Lepton}} = -\overline{L^i}[Y_{1,ij}\Phi_1 + Y_{2,ij}\Phi_2]e_R^j + \text{H.c.}$ Jarlskog invariant $J_A = \frac{1}{v^2\mu_{12}^{\text{HB}}}\sum_{a,b,c=1}^2 v_a v_b^*\mu_{bc} \text{Tr}[Y_c Y_a^\dagger]$

discovery or exclusion

Unconstrained from EDM measurements

ACME 2014: $\left| \frac{d_e}{e} \right| < 8.7 \times 10^{-29} e \cdot \text{cm}$

Collider Sensitivities

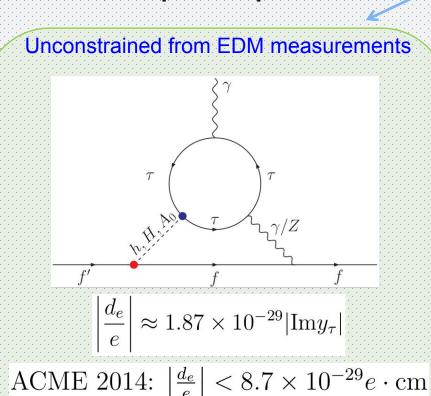
Collider	pp	pp	pp	e^+e^-	e^+e^-	e^+e^-	e^+e^-	e^-p	$\gamma\gamma$	$\mu^+\mu^-$	$\mu^+\mu^-$	target
E (GeV)	14,000	14,000	100,000	250	350	500	1,000		125	125	≥ 500	(theory)
\mathcal{L} (fb ⁻¹)	300	3,000	20,000	250	350	500	1,000		250			
HZZ/HWW	$4 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$	✓	$3.4 \cdot 10^{-4}$	$1.1 \cdot 10^{-4}$	$4 \cdot 10^{-5}$	$8 \cdot 10^{-6}$	✓	✓	✓	✓	$< 10^{-5}$
$H\gamma\gamma$	-	0.50	✓	=		-	=3	35-31	0.06	1 -	_	$< 10^{-2}$
$HZ\gamma$	870	~ 1	✓		0 - 0	570	-	-	- TO		1779	$< 10^{-2}$
Hgg	0.12	0.011	✓	=	(4-0)	-		· — ·	1 1	3-1-2	-	$< 10^{-2}$
$Htar{t}$	0.24	0.05	✓		(1— 8)	0.29	0.08	0-0	-	3-3	✓	$< 10^{-2}$
H au au	0.07	0.008	✓	0.01	0.01	0.02	0.06	r=s	✓	✓	✓	$< 10^{-2}$
$H\mu\mu$	1-	-	-	-	()	-		ē—3	-	✓	-	$< 10^{-2}$

Snowmass White Paper: Gritsan et al [2205.07715]

CP-Violation Lepton-flavored EWBG

OK

HG, Li, Liu, Ramsey-Musolf, Shu, PRD [1609.09849]


- Effective for baryon asymmetry generation
- GW less affected by the small CPV
- Definitive target for CEPC and others

With GWs: Xie, JHEP [2011.04821] and others

$-\frac{m_{\tau}}{v}\left[\operatorname{Re}(y_{\tau})\bar{\tau}\tau+\operatorname{Im}(y_{\tau})\bar{\tau}i\gamma_{5}\tau\right]h$

Type III 2HDM $\mathcal{L}_{\mathrm{Yukawa}}^{\mathrm{Lepton}} = -\overline{L^{i}}[Y_{1,ij}\Phi_{1} + Y_{2,ij}\Phi_{2}]e_{R}^{j} + \mathrm{H.c.}$ Jarlskog invariant $J_{A} = \frac{1}{v^{2}\mu_{12}^{\mathrm{HB}}}\sum_{a,b,c=1}^{2}v_{a}v_{b}^{*}\mu_{bc}\mathrm{Tr}[Y_{c}Y_{a}^{\dagger}]$

discovery or exclusion

Summary

- GW serves as a new tool for probing the EWPT
- Correlation and complementarity exist between colliders and GW
- Studies at colliders can guide future detections at 太极、天琴、LISA

The 2023 Shanghai Symposium on Particle Physics and Cosmology: Phase Transitions, Gravitational Waves, and Colliders (SPCS 2023)

Organizing Committee

- Michael Ramsey-Musolf 任穆 (Shanghai Jiao Tong University, Tsung-Dao Lee Institute)
- Huaike Guo (University of Chinese Academy of Sciences, ICTP-AP)
- Fa Peng Huang (Sun Yat-Sen University)
- Shu Li (Shanghai Jiao Tong University, Tsung-Dao Lee Institute)
- Kun Liu (Shanghai Jiao Tong University, Tsung-Dao Lee Institute)
- Lei Zhang (Nanjing University)

Website: https://indico-tdli.sjtu.edu.cn/event/1741/