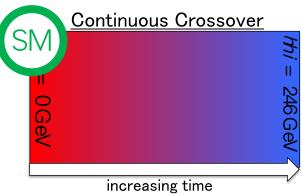

Testing EWPT at the lifetime and energy frontiers

Wei Liu (刘威)

Nanjing University of Science and Technology JHEP 04(2021) 015, Phys.Rev.D 105 (2022) 11, 115040 CEPC 2023


Phase transition in electroweak theory

EW symmetry restoration in the early Universe

What is the pattern of EW phase transition

It could be –

Lattice calculation shows the phase diagram ==>

Thus in the SM it is a crossover, since $M_h = 125 \text{ GeV} > 75 \text{ GeV}$;

However, a 1st-order EWPT is more interesting.

(Needs new physics)

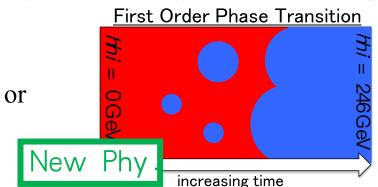
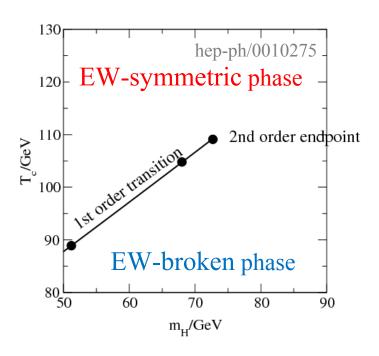
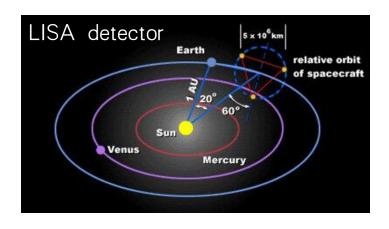



Figure from L.-T. Wang's talk in IHEP workshop

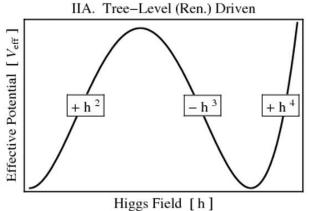


Why is a 1st-order EWPT interesting?

- It's the essential ingredient of the EW baryogenesis.
- Acting as the <u>background</u> of very rich **dark matter** mechanisms
- Sources of the stochastic GWs:

- Collision of the bubbles
- Sound waves in plasma
- Turbulance in plasma

EWPT GWs typically peak in mHz.



How to achieve a 1st-order EWPT?

Adding a barrier for the Higgs potential via new physics! The decay between two vacua separated by a barrier. The VEV of the Higgs field *jumps*.

Getting a barrier via the help of additional scalar field(s):

- SM + real singlet (xSM);
- 2HDM;
- Georgi-Machacek model;
- •

We choose the **xSM** as the benchmark model.

- It's simple, but has captured the most important feature of EWPT;
- It can be treated as the prototype of many new physics EWPT models.

EWPT in the xSM (SM + real singlet)

We choose the **xSM** as the benchmark model.

It's simple, but has captured the most important feature of EWPT.

The scalar potential of the xSM

$$V = -\mu^{2}|H|^{2} + \lambda|H|^{4} + \frac{a_{1}}{2}|H|^{2}S + \frac{a_{2}}{2}|H|^{2}S^{2} + b_{1}S + \frac{b_{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

8 input parameters:

1 unphysical, 2 fixed by Higgs mass & VEV; 5 free parameters.

Expansion around the VEV

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}, \quad S = v_s + s, \quad \begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

Mass eigenstates & the mixing angle.

Probing EWPT of the xSM at colliders

Feature of the xSM

Two neutral scalars: h_1 (Higgs-like) and h_2 (singlet-like, TeV), with mixing angle θ ;

$$g_{h_2VV} = g_{hVV}^{\rm SM} \sin \theta$$
$$g_{h_2f\bar{f}} = g_{hf\bar{f}}^{\rm SM} \sin \theta$$
$$\lambda_{h_2h_1h_1} \propto \sin \theta$$

$$g_{h_1 VV} = g_{hVV}^{\text{SM}} \cos \theta$$
$$g_{h_1 f\bar{f}} = g_{hf\bar{f}}^{\text{SM}} \cos \theta$$
$$\lambda_{h_1 h_1 h_1} = \lambda_{hhh}^{\text{SM}} f(\theta)$$

$$h_2$$
 h_2 h_2 h_2 h_1 h_2 h_2 h_3 h_4

Direct searches at the *pp* colliders

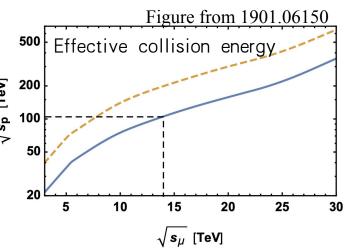
Indirect searches at the e^+e^- colliders

Muon collider!

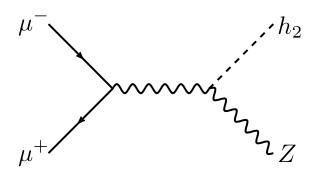
Precision and Energy Frontier!

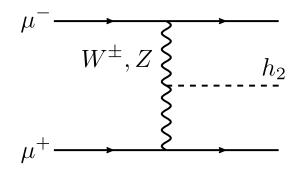
A high-energy muon collider is able to execute both the

- direct search
- indirect search


strategies for EWPT in xSM!

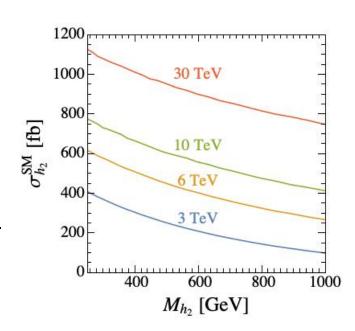
Compared to the e^+e^- machine:


- Synchrotron radiation is suppressed by 10^9 since $M_{\mu} >> M_e$, hence the collision energy can reach O(10) TeV;
- Also very clean, as long as the beam-induced-background is controllable (main challenge).


Compared to the pp machine:

- The entire collision energy can be used to probe hard process;
- Much cleaner due to the small QCD background.

Producing the h_2 at a muon collider



 Zh_2 associated production & Vector Boson Fusion (VBF).

At a multi-TeV collider, the dominant channel is VBF, in which W^+W^- fusion dominates (90%);

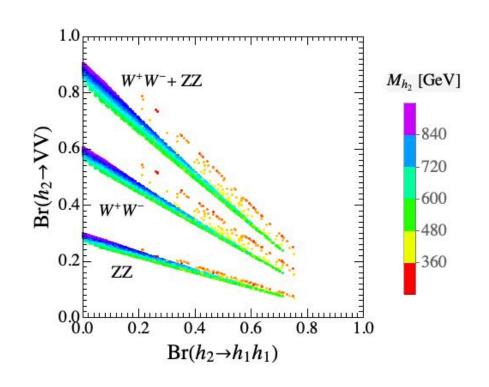
 $\sigma^{\text{SM}}(h_2)$: rate obtained by assuming a Higgs-like coupling for the h_2 .

Decay of h_2 to SM particles (X = vector boson or fermion)

$$\Gamma(h_2 \to XX) = \sin^2 \theta \times \Gamma^{\text{SM}}(h_2 \to XX),$$

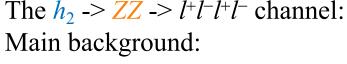
$$\Gamma(h_2 \to h_1 h_1) \propto \lambda_{h_2 h_1 h_1}^2$$

Dominant channels: di-boson (W^+W^- , ZZ), tt, and h_1h_1 .

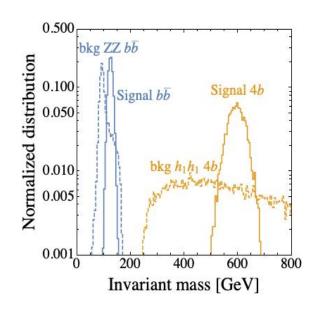

The h_1h_1 channel can reach a branching ratio of 80%;

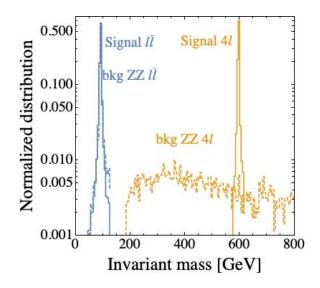
For heavy h_2 , the VV channel dominates;

We choose

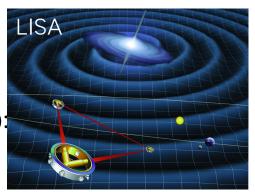

- $h_2 \rightarrow ZZ \rightarrow l^+l^-l^+l^-$
- $h_2 \rightarrow h_1 h_1 \rightarrow bbbb$

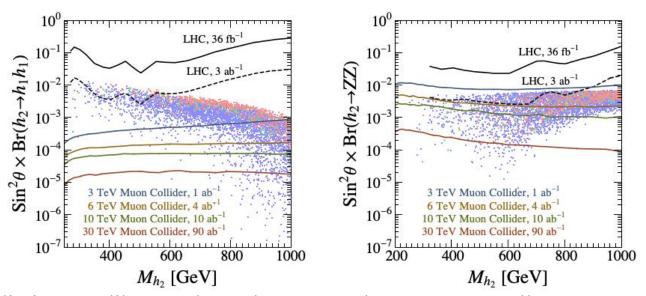
for a detailed simulation.




The $h_2 \rightarrow h_1 h_1 \rightarrow bbbb$ channel: Main background:

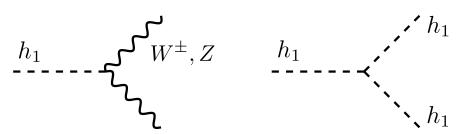
- Vector Boson Scattering ZZ -> bbbb
- $h_1h_1 \rightarrow bbbb$.

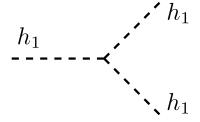

 Vector Boson Scattering ZZ -> l⁺l⁻l⁺l⁻.



The collider search and gravitational wave detection are complementary!

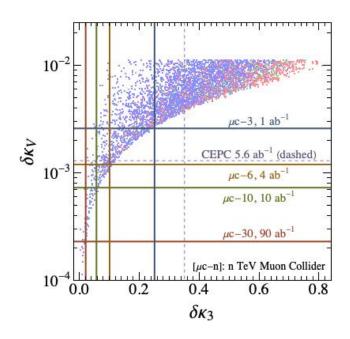
For the LISA detector, signal-to-noise ratio (SNR):




$$SNR = \sqrt{\mathcal{T} \int_{f_{\min}}^{f_{\max}} df \left(\frac{\Omega_{GW}(f)}{\Omega_{LISA}(f)}\right)^2}$$

The diHiggs & diboson channels are complementary as well

The gauge boson coupling & triple Higgs coupling. Making use of the results in [Han, Liu, Low and Wang, 2008.12204].



Defining deviations

$$\delta \kappa_V = \left| \frac{g_{h_1 VV}}{g_{h_1 VV}^{\text{SM}}} - 1 \right|,$$

$$\delta \kappa_3 = \frac{\lambda_{h_1 h_1 h_1}}{\lambda_{h_1 h_1 h_1}^{\text{SM}}} - 1$$

We can obtain the projections.

Long-lived Particles

LLP is widely searched, of great interests experimentally and theoretically.

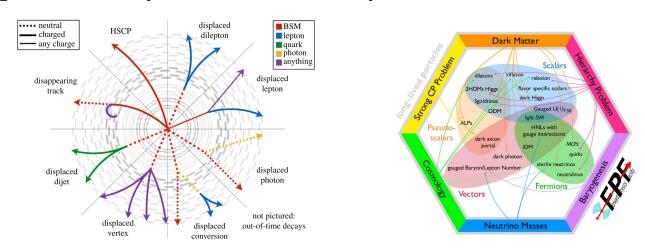


Figure from Albert De Roeck.

Figure from 2203.05090.

Light weakly-coupled particles as LLPs, are strongly motivated, including the light scalar responsible for 1st-order EWPT in the xSM.

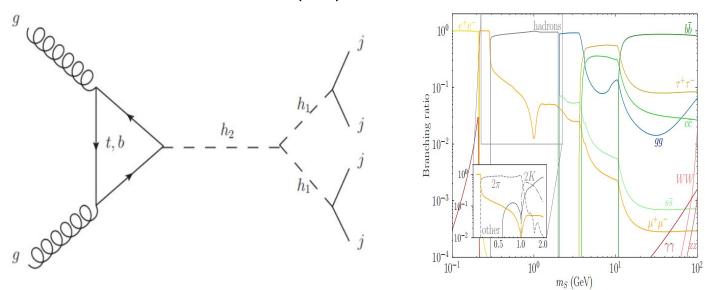
LLP EWPT

From J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D 101 (2020) 11, 115035

The Higgs mixing is small

Approximate **Z**₂ symmetry

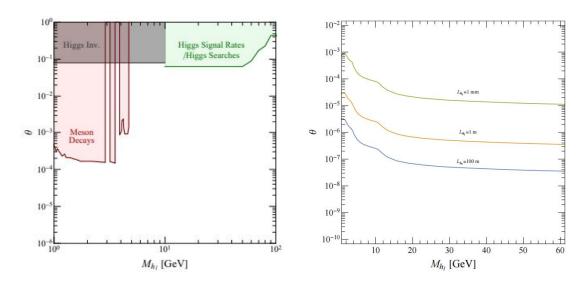
EWPT can happen as two-step transition


$$(h = 0, s \simeq 0) \to (h = 0, s \neq 0) \to (h \neq 0, s \simeq 0),$$

There are analytical bounds from two-step transition

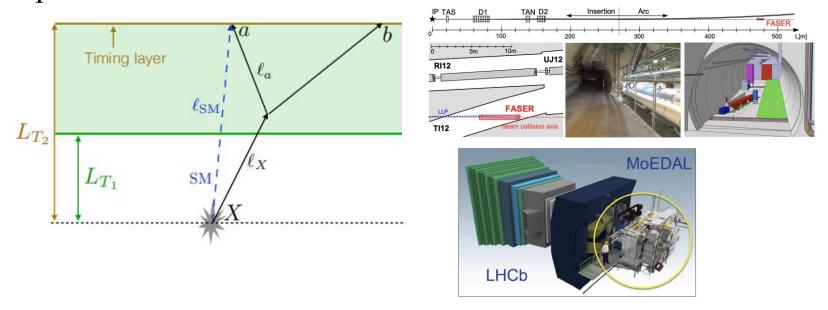
$$a_2 \gtrsim rac{m_{h_1}^2}{4v^2} rac{\Delta}{1 - \Delta}, \ |b_3| > \sqrt{rac{9}{4}b_4(2m_{h_1}^2 - a_2v^2 + 2T_{\mathrm{EW}}^2eta)}, \ b_4 \gtrsim rac{m_{h_1}^4\Delta}{4\lambda v^4(1 - \Delta)},$$

Production processes


$$gg \rightarrow h_{2(SM)} \rightarrow h_1h_1 \rightarrow 4j$$

1st-order EWPT leads to large $BR(h_2 \rightarrow h_1h_1)$. h_1 decays into jets dominantly.

Long-lived Particles


The current limits on (M_{h_1}, θ)

For M_{h_1} < 10 GeV, the current limits from rare meson decays at the LHCb, leads to h_1 as a long-lived particle (LLP).

Detectors for LLPs

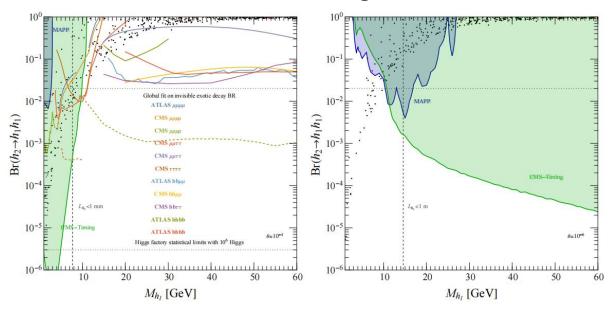
CMS-Timing, FASER, MoEDAL-MAPP are to be operated at Run 3.

Many others, e.g. MATHUSLA and CODEX-b are in discussions.

CMS-Timing detector using the time-delayed leptons/jets as signals, while the other detectors using displaced vertex.

Connects to 1st-order EWPT

Link between the number of events and 1st-order EWPT


$$\begin{split} & \mathsf{N}_{signal} \\ &= \sigma_{pp \to h_2} \times \mathsf{L} \times \mathsf{BR}_{h_2 \to h_1 h_1}(a_2, M_{h_1}) \\ & \times \mathsf{BR}_{h_1 \to jj}^{\ 2}(M_{h_1}) \times \epsilon_{kin}(M_{h_1}) \times \epsilon_{geo}(M_{h_1}, \theta) \end{split}$$

$$BR_{h_2 \to h_1 h_1}(a_2, M_{h_1}) = \frac{\Gamma_{h_2 \to h_1 h_1}}{\Gamma_{h_2}^{SM} + \Gamma_{h_2 \to h_1 h_1}}$$

 $\Gamma_{h_2 \to h_1 h_1} \propto (a_2 v)^2$

LLP events are sensitive to $|H|^2S^2$ couplings.

Sensitivity

Fixed $\theta = 10^{-4} (lef t)$, $10^{-6} (right)$.

No FASER sensitivity, too forward CMS-Timing can probe large parameter space where the searches for promptly exotic Higgs decays can not reach.

MAPP can only probe small parameter space, while none for FASER.

Conclusion

1st-order EW phase transition is interesting:

- Theoretically, it is the essential ingredient of EW baryogenesis, and can trigger very rich dark matter mechanisms;
- Experimentally, it yields detectable gravitational waves.

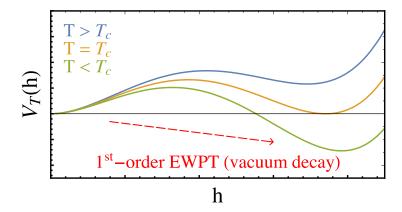
We propose strategies to probe 1st-order EWPT from LLP signatures at the HL-LHC, and at a high-energy muon collider.

For heavy, strongly coupled scalar corresponding to 1st-order EWPT, it can lead to direct and indirect signals at the muon colliders, and complementary GW signals.

For light, weakly coupled scalar corresponding to 1st-order EWPT, it can lead to LLP signatures, but no detectable gravitational waves.

LLP search is complementary to the searches for promptly exotic Higgs decays!

1st-order EWPT in the xSM


At finite temperature:

$$V = -(\mu^{2} - c_{H}T^{2})|H|^{2} + \lambda|H|^{4} + \frac{a_{1}}{2}|H|^{2}S + \frac{a_{2}}{2}|H|^{2}S^{2}$$

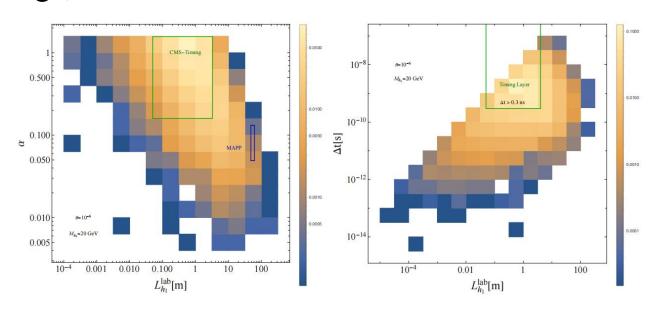
$$+ (b_{1} + m_{1}T^{2})S + \frac{b_{2} + c_{S}T^{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$$

$$c_{H} = \frac{3g^{2} + g'^{2}}{16} + \frac{y_{t}^{2}}{4} + \frac{\lambda}{2} + \frac{a_{2}}{24}, \quad c_{S} = \frac{a_{2}}{6} + \frac{b_{4}}{4}, \quad m_{1} = \frac{a_{1} + b_{3}}{12}$$

An Illustration --

Question:

Can <u>collider experiments</u> probe the 1st-order EWPT parameter space?

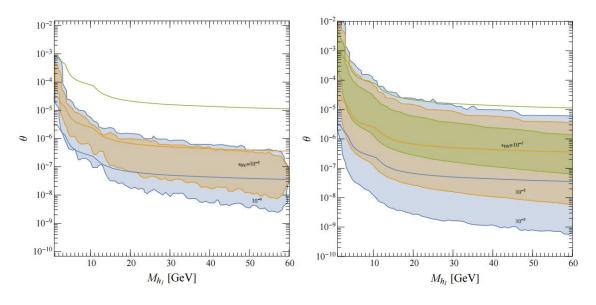

Main background:

```
✓ Vector Boson Scattering ZZ -> bbbb (IIII) and h_1h_1 -> bbbb. Kinematic Cuts:
```

Cut I:
$$p_T > 30 \text{ GeV}$$
, $|\eta| < 2.43$, $M_{recoil} > 200 \text{ GeV}$, (Cut I)
Cut II: minimizing $\chi^2 = (M_{12} - M_h)^2 + (M_{34} - M_h)^2$
 $|M_{12} - M_h| < 15(10) \text{ GeV}$, $|M_{34} - M_h| < 15(10) \text{ GeV}$
Cut III: $|M_{1234} - M_{h_2}| < 30(20) \text{ GeV}$,
 $\Delta E/E = 10\%$, $\varepsilon_{b-tag} = 70\%$

Detector efficiency

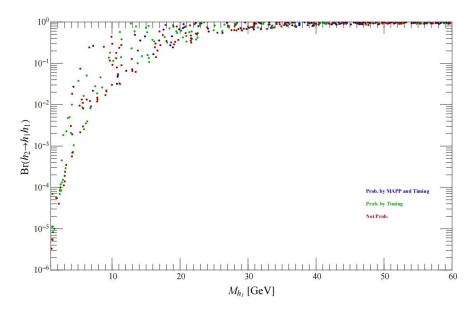
Detector efficiency is a function of geometrical coverage,


and resolution in time for timing detector.

CMS-Timing has large coverage, and good resolution.

MAPP has small coverage,
while negligible for FASER.

Detector efficiency


Detector efficiency is a function of geometrical coverage,

CMS-Timing has efficiency up to 10^{-1} . MAPP has 10^{-4} , while negligible for FASER.

Signatures at Colliders

Running *θ*

Green points are probed by CMS-Timing, but not by MAPP. CMS-Timing can probe **a lot more** 1st-order EWPT points. There are still appreciable points not probed by any of LLP detectors.