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Phase transition in electroweak theory

EW symmetry restoration in the early Universe

 Current | W & Z bosons are massive;
| Photon is massless,
Mexican-hat like

Phase transition
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SU(2); & U(1)y bosons are massless, | (Thermal effects)
True vacuum h




What is the pattern of EW phase transition
It could be — (PT)?

Figure from L.-T. Wang’s talk in IHEP workshop

Continuous Crossover First Order Phase Transition
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Lattice calculation shows the phase
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Thus 1n the SM it is a crossover, since
M, =125 GeV > 75 GeV; |
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2nd order endpoint
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However, a Ist-order EWPT is more
interesting. 90
(Needs new physics)

EW-broken phase
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Why is a 1st-order EWPT interesting?

It’s the essential ingredient of the EW baryogenesis.
Acting as the background of very rich dark matter mechanisms
Sources of the stochastic GWs::

Collision of the bubbles T e —

T~ " of spacecraft

Sound waves In plasma
Turbulance In plasma

EWPT GWs typically peak in mHz.




How to achieve a 1st-order EWPT?

Adding a barrier for the Higgs potential via new physics!
The decay between two vacua separated by a barrier.
The VEV of the Higgs field jumps.

ITA. Tree—Level (Ren.) Driven

Getting a barrier via the help of
additional scalar field(s):

Effective Potential [ Vg ]

* SM + real singlet (xSM); BT TS
« 2HDM,;
* Georgi-Machacek model;

Higgs Field [h]

We choose the xXSM as the benchmark model.

* It’s simple, but has captured the most important feature of EWPT;

e It can be treated as the prototype of many new physics EWPT
models.



EWPT in the xSM (SM + real singlet)

We choose the xXSM as the benchmark model.
It’s simple, but has captured the most important feature of EWPT

The scalar potential of the xSM

V= — y2H|? + A H|* + %\HPS + “—;\H|252
bs ba L4
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+huS+ 50 280+

8 Input parameters:
1 unphysical, 2 fixed by Higgs mass & VEV; 5 free parameters.

cos —sind hq
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Expansion around the VEV
1 0 h
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Mass eigenstates & the mixing angle.



Probing EWPT of the xSM at colliders

Feature of the xSM

Two neutral scalars: /1, (Higgs-like) and 7/, (singlet-like, TeV), with

mixing angle 6,

Ghavv = Ghvy sind
SM .
Ghy fF = ghffsme

)‘h2h1h1 x sinf

gh vV = ghvy cos O
SM
Ghy f7 = ghffcose
SM
>‘h1h1h1 — Ahhhf(e)
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Direct searches at the pp colliders
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------------ <
\\\ hl
Indirect searches at the ete colliders




Muon collider!

Precision and Energy Frontier!

A high-energy muon collider is able to execute both the

* direct search

* indirect search

strategies for EWPT in xSM!

Compared to the e*e™ machine:

*  Synchrotron radiation is suppressed by 10° since M, >> M, , hence
the collision energy can reach O(10) TeV;

* Also very clean, as long as the beam-induced-background is

controllable (main challenge).

. . Figlllre from 1901.06150
Compared to the pp machine: S00{ Fffective collision energy

* The entire collision energy can be <
used to probe hard process; % 100l

*  Much cleaner due to the small QCD £ sl
background.
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Muon collider: direct search

Producing the /1, at a muon collider

IU/ >
W+, Z hs
ut
/h, associated production & Vector Boson
Fusion (VBF). 1200 e e N asacy .
1000:— ~_ 30 TeV _
At a multi-TeV collider, the dominant w0l \““‘x«m 3
channel 1s VBF, in which /"7~ fusion B e e s
dominates (90%); %6,? e s Wi o .
400+
oM(h,): rate obtained by assuming a Higgs- 200[
like coupling for the 4. o




Muon collider: direct search

Decay of /1, to SM particles (X = vector boson or fermion)
I'(hy — XX) = sin?6 x ™™ (hy, —» X X),
T'(he = h1h1) o< A pn,

Dominant channels: di-boson (W1, 77), tt, and h,h,.

The /1,/1, channel can reach a ) S ———
branching ratio of 80%;
08F"
For heavy /,, the ')/ channel E ;
dominates; T m
‘50.4
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o h,->//7 >
 hy,->hh, -> bbbb
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for a detailed simulation.
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Muon collider: direct search

The /, -> hh, -> bbbb channel: The h, -> 77 -> [*["I*[- channel:

11 Main background: Main background:
* Vector Boson Scattering /7 -> ¢ Vector Boson Scattering /7 ->
bbbb .

« Ik, > bbbb.
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Muon collider: direct search

The collider search and gravitational wave
12 detection are complementary!

For the LISA detector, signal-to-noise ratio (SNR)

_ fma Qcaw (f) )2
SNR=1/T Fonin i (QLISA(f)
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The diHiggs & diboson channels are complementary as well




Muon collider: indirect search

The gauge boson coupling & triple Higgs coupling. Making use of the
results in [Han, Liu, Low and Wang, 2008.12204] :
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Long-lived Particles

14 LLP 1s widely searched, of great interests
experimentally and theoretically.

« neutral HSCP displaced EBSM

| dilepton M lepton

I M quark
photon
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¥ displaced out-of-time decays
versi

Figure from Albert De Roeck. Figure from 2203.05090.
Light weakly-coupled particles as LLPs, are strongly

motivated, including the light scalar responsible for
Ist-order EWPT in the xSM.




LLP EWPT

From J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D
101 (2020) 11, 115035

The Higgs mixing 1s small
Approximate Z » symmetry

EWPT can happen as two-step transition
(h=0,s~0)—> (h=0,s#0) > (h#0,s ~0),

There are analytical bounds from two-step transition

m%ll A

>
RS2 T-A

9
|b3| > \/154(27";211 — agv? + 2Ty B),
by > mﬁlA |
4 i (1 - A)




Production processes

gg - hyism) = hihy = 4
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Ist-order EWPT leads to large BR(h, = hyhy).
h; decays into jets dominantly.




Long-lived Particles

The current limits on (M,,.,0)

107
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For My, <10 GeV, the current limits from rare meson

decays at the LHCb, leads to hq as a long-lived particle
(LLP).




Detectors for LLPs

CMS-Timing, FASER, MoEDAL-MAPP are to be
operated at Run 3.

18
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Many others, e.g. MATHUSLA and CODEX-b are in
discussions.

CMS-Timing detector using the time-delayed
leptons/jets as signals, while the other detectors using
displaced vertex.




Connects to 1st-order EWPT

Link between the number of events and 1st-order
EWPT

Nsignal
= GPP—>h2 X L X BRh2_>h.|h.| (aZI Mh-|)
X BRh1—>i.i2 (Mh1) X €kin (Mh1) X ege°(Mh1' 9)

Cho  heh
_ 2_sh1hq
BRh2—>h'|h'| (azi Mh'|) r SM r

ha  +1hyhihy

2
Mh, hyhy < (32V)

LLP events are sensitive to |H|?S? couplings.



Sensitivity

20

Fixed 8 = 10~*(left), 10~°(right).

100 = lO“k | REERARRR PREES FF Lot 32 Uiy Radinr it Rty
T —*—71_‘_7_‘HKE F .. ‘}._"-":.;"r" i
10! L
- 7;
- <
= L RN SRS = :
T 107 T E
o I E .
= = =
5 5 F
10 E-
107 103 —
E [ipd
|0—6 : 10-6 ponnbs b b b e
10 20 30 40 50 60 10 20 30 40 50 60
My, [GeV] My, [GeV]

No FASER sensitivity, too forward

CMS-Timing can probe large parameter space where
the searches for promptly exotic Higgs decays can not
reach.

MAPP can only probe small parameter space, while
none for FASER.




Conclusion

Ist-order EW phase transition is interesting:

» Theoretically, it is the essential ingredient of EW baryogenesis, and can
trigger very rich dark matter mechanisms;

* Experimentally, it yields detectable gravitational waves.

We propose strategies to probe 15-order EWPT from LLP signatures at
the HL-LHC, and at a high-energy muon collider.

For heavy, strongly coupled scalar corresponding to 1st-order EWPT, it
can lead to direct and indirect signals at the muon colliders, and
complementary GW signals.

For light, weakly coupled scalar corresponding to 1st-order EWPT, it can
lead to LLP signatures, but no detectable gravitational waves.

LLP search is complementary to the searches for promptly exotic Higgs
decays!



Ist-order EWPT in the xSM

At finite temperature:

a a
22 V=~ (4 —cnT)H? + NH[* + | HS + = |H|*S*
b T2 b b
+ (by +miT?)S + 2+2€S $2 4+ 2504 s
39497y A _az by a1+ b3
=76 +Z+2+ﬂ =% T ™MT T

An Illustration --

t T>T.

F T < T,

——_—
—_——
—_
—_——_
\sﬂ

1%'—order EWPT (vacuum decay)
h

Vr(h)

Question:
Can collider experiments probe the 1st-order EWPT parameter space?




Muon collider: direct search

Main background:

v" Vector Boson Scattering /7 -> bbbb (Ill)and /1, -> bbbb.
Kinematic Cuts:

Cutl: p;>30GeV,|n| <243, M,ocoi1 > 200 GeV, (Cut I)
Cut II: minimizing x2 = (M1, — Mp)? + (M3, — Mp,)?
IM1, — My| < 15(10) GeV, |[M34 — My| < 15(10) GeV
CutIIl: [My234 — My, | < 30(20) GeV,
AE/E = 10%, €p_tag = 710%




Detector efficiency

24 Detector efficiency 1s a function of geometrical
coverage,
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and resolution in time for timing detector.
CMS-Timing has large coverage, and good resolution.
MAPP has small coverage,

while negligible for FASER.




Detector efficiency

)5 Detector efficiency 1s a function of geometrical
coverage,

v b b b
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CMS-Timing has efficiency up to 107".
MAPP has 1074,
while negligible for FASER.
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Signatures at Colliders

Running 6

B[(hz—ﬂ’llhl)
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Green points are probed by CMS-Timing, but not by MAPP.
CMS-Timing can probe a lot more 1st-order EWPT points.
There are still appreciable points not probed by any of LLP
detectors.
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