Energy correlator measurements at the CMS

肖朦,浙江大学 CEPC味物理-新物理和相关探测技术研讨会,上海,2023年8月16日

Jets: proxies to study QCD

Di-jet multi-differential cross section Compared to NNLO predictions, 10⁻⁴ - 10²³

CMS-PAS-SMP-21-008

Constraints on gluon PDF

Jet formation and jet substructure

Angular-ordered

Jet substructure and alphaS

MLB : TUESDAY MORNING

Matt LeBlanc (CERN) — Overview (Experimental) — BOOST 2022 — Slide 41

Leshouches2017, axXiv: 1803.07977, estimated precision on αS: 10%

STRONG COUPLING FROM JSS (PROSPECTS)

HOFIE : THURSDAY MORNING!

Prediction: we will see the first α_s extractions from JSS during Run 3!

Energy correlators: EnC

Chen, Moult, Zhang, and Zhu, *arXiv:2004.11381* Lee, Meçaj, and Moult, *arXiv:2205.03414* Chen, Gao, Li, Xu, Zhang, and Zhu, arXiv:2307.07510

Insensitive to soft radiation

EnC: statistical correlations

Multi entry distribution for every jet, statistical correlation important

E2C correlation matrix

EnC: Constituent unfolding

Unfolding: detector level -> particle level

Unfold jet constituents instead of distribution:

- p_T^{jet} , x_L and energy weight, 3D unfolding
- 10 * 22 * 20 = 4400 bins

Particle level

Detector level

CMS-PAS-SMP-22-015 https://cds.cern.ch/record/2866560

E3C in all pT regions

Boundary shift with jet pT

 $Q \propto x_L^* p_T^{jet}$ $p_T^{jet} \uparrow, x_L \downarrow$

E3C/E2C: a new way to extract α_S

Chen, Gao, Li, Xu, Zhang, Zhu, *arXiv:2307.07510*

 $p_T^{jet} \uparrow$, Slope \downarrow

Unfolded E3C/E2C vs NNLL-approx

- Jet substructure has become a powerful tool to understand QCD with high precision
- Energy correlators provide new ways to understand the jet formation
 - Color confinement
 - Asymptotic freedom
- 4% precision of α_{S_i} the most precise using jet substructure to date

