

The performance of the ALICE TPC

中国科学技术大学

复旦大学, 2023年8月16

ALICE@LHC

ALICE is optimized to study the collisions of nuclei at the ultra-relativistic energies provided by the LHC. The aim is to study the physics of strongly interacting matter, called the quark-gluon plasma.

16/08/23

The performance of the ALICE TPC

ALICE Detector Schematic

Basic principle of the TPC

- Incident particles traversing the gas volume can ionize the gas along their trajectory
- Electrons created in the ionization drift in the E-Field towards the end-plates
- The pad-planes collect the signals created in the endplates.
- Pad signals are further amplified and shaped by the Front-End- Electronics
- X/Y position given by pad location, Z position given by drift time

Various factors impact the operation of a TPC, like changing properties of the gas volume (T,p), distortions

created by the charge inside the volume, gain variations in the amplification region.

16/08/23

The ALICE TPC

TPC main features:

 ~92 m³ active volume with gas mixture: Ne-CO₂ (90-10)

ALICE

- Low drift diffusion
- 72 (=18x2x2) MWPCs with pad readout
- Excellent performance on momentum reconstruction and dE/dx

Energy loss per unit path length is described by the Bethe-Bloch formula

$$\langle \frac{dE}{dx} \rangle = \frac{4\pi N e^4}{mc^2} \frac{z^2}{\beta^2} \left(\frac{1}{2} \ln \frac{2mc^2 E_{max} \beta^2 \gamma^2}{I^2} - \frac{\beta^2}{2} - \frac{\delta(\beta)}{2} \right)$$

TPC Readout Chamber (Run 2)

3 different pad segments:

- 63 rows with 4 x 7.5 mm^2 (IROCs)
- 64 rows with 6 x 10 mm² (inner OROCs)
- 32 rows with 6 x 15 mm^2 (outer OROCs)

Multi-wire proportional chambers (MWPC) + gating grid

- Dead time: $\sim 92\mu s$ (drift) + $\sim 280\mu s$ (gating)
- Readout: 3 kHz max

16/08/23

From triggered readout (Run 1&2) to continuous readout with GEMs (Run3)

The upgrade of the ALICE TPC for Run 3

Upgrade front end electronics by Gaseous Electron Multiplier (GEM) foils

- Maintains current TPC performance
- Reduced ion backflow + high rate capability
- 4 Layers, varying GEM pitch

The simulation and testing of the GEM readout

- Highly optimized high voltage configuration
- Gain 2000 in Ne-CO2-N2 (90-10-5)
- Energy resolution < 12% for 55 Fe
- Ion backflow < 1 %

Comparison between wire and GEM chambers

	wire chamber		GEM chamber
	grid open	grid closed	
gain	8000	0	2000
ion backflow	0.13	<0.0001	<0.01

Space-charge distortion with Run3

- Large distortions of the drift field in specific regions of the TPC observed in Run 3 data
- **Positive ions** created inside the TPC drift volume
- Deflection of ionization electrons in radial (dr), azimuthal $(dr\varphi)$ and drift (dz) direction
- Dependence on the drift length and interaction rate (IR)

The momentum resolution is worse than that of the Run 1 and Run 2, offline calibrations are critical

ALI-PERF-529714

Different particle species can be well discriminated by the TPC dE/dx. The resolution is slightly worse than Run 2, but it should be recovered via the new calibrations.

16/08/23

The width of the signal peak should be improved by the new SC distotion corretions as well

- ALICE TPC upgraded for Run 3 to operate at 50 kHz rate in Pb-Pb collisions
- No gating, continuous readout with GEMs
- Improve statistics of minimum-bias for pp and Pb-Pb collisions by a factor of 10⁴ and 10², respectively.
- The space charge distortion effects can be corrected by the offline calibration

Thanks

ALICE Detector Schematic (Run 3)

