PID Study for CEPC Drift Chamber

Xu Gao

Jilin university

For the DC-PID group of the CEPC 4th conceptual detector

The CEPC Workshop on Flavor Physics, New Physics and Detector Technologies Aug. 13-18, 2023, Shanghai

Outline

- Introduction
- Waveform-based full simulation
- Fast simulation with Delphes

- Activities on prototype test
- Summary

CEPC

• CEPC

- 240 GeV (Higgs factory),
- 91.2 GeV (Z factory or Z pole) -
- 160 GeV (WW threshold scan)

 4×10^{12} Z: provide diverse flavor measurements

- Particle identification (PID) is essential for flavor physics and jet study
 - Reduce combination background
 - Improve mass resolution
 - Benefit flavor tagging

CEPC the 4th conceptual detector

Solenoid Magnet (3T / 2T) Between HCAL & ECAL

Advantage: the HCAL absorbers act as part of the magnet return yoke.

Challenges: thin enough not to affect the jet resolution (e.g. BMR); stability.

Transverse Crystal bar ECAL

Advantage: better π^0/γ reconstruction.

Challenges: minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

A Drift chamber that is optimized for PID

Advantage: Work at high luminosity Z runs Challenges: sufficient PID power; thin enough not to affect the moment resolution.

- Tracker with silicon tracker and a drift chamber
- The chamber optimized for PID with cluster counting technique
- Up to 20 GeV/c K/π separation power required

dE/dx vs dN/dx

- dE/dx: Energy loss per unit length, Landau distribution, large fluctuation
- *dN/dx*: Number of primary ionization clusters per unit length, Poisson distribution, small fluctuation → cluster counting technique

In theory, dN/dx has a significant advantage over dE/dx.

workflow and DC preliminary design

Preliminary	DC	parameters
-------------	----	------------

Inner radius	800 mm	
Outer radius	1800 mm	
Cell size	18 mm × 18 mm	
Gas mixture	He/iC4H10=90:10	

Waveform-based full simulation

Simulation process

Reconstruction algorithm

Step1. Peak Finding

Discriminate peaks (both primary and secondary) from the noises

➤Two methods under study

Classical method (developed): Derivative-based peak finding + clusterization with peak merge Deep learning based algorithm (ongoing): Peak finding with LSTM + clusterization with DGCNN

Step2. Clusterization:

Determine the number of clusters (N_{cls}) from the

K/π separation power with Classical method

K/ π separation power vs P (1m track length, cos θ =0)

K/ π separation power vs cos(θ)

 $2\sigma K/\pi$ separation power is reached up to 20 GeV/c

Deep learning based algorithm (under development) is expected to provide better performance

Fast simulation with Delphes

- Delphes is a modular framework that simulates the response of a multipurpose detector
 - $10^2 \sim 10^3$ faster than the fully GEANT based simulations
 - Sufficient and widely used for phenomenological studies
- For simulations of the CEPC 4th concept detector :
 - Detector layout based on preliminary optimization

٠

. . .

- A dedicated PID module(dN/dx and TOF) developed
- · Consistent workflow for lepton/photon isolation and jet-clustering
- More details in github repository: https://github.com/oiunun/Delphes_CEPC.git

J. High Energ. Phys. 2014, 57 (2014)

Detector configuration

Calorimeter system:

• Preliminary implementation, reasonable resolution achieved. Needs more tuning

dN/dx model in Delphes

Parameterized simulation of dN/dx_{meas}

The calculation of the probability

dN/dx + TOF combined chi-square:

 $(\chi^i)^2 = (\chi_1^i)^2 + (\chi_2^i)^2$ (It follows a Chi-square distribution of 2 degrees of freedom)

$$\chi_1^i = \frac{(dN/dx)_{meas} - (dN/dx)_{exp}^i}{(\sigma)_{dN/dx}^i} \qquad \qquad \chi_2^i = \frac{(tof)_{meas} - (tof)_{exp}^i}{(\sigma)_{tof}^i}$$

PID selection with probability calculated by chi-square:

• e.g. identified as π : Prob(π)>Prob(K) & Prob(π)>Prob(p)

PID efficiency

efficiency : $\varepsilon_j^i = \frac{n_j^i}{n_{tot}^j}$

- n_i^i :number of j being identified as i.
- n_{tot}^j :number of j

Good PID performance up to 20 GeV/c

PID performance with B_s^0/B^0 decays

- $B_s^0 \to \phi \phi, \phi \to K^+ K^-$
- $B^0/B_s^0 \rightarrow hh, h = \pi, K$
- Background: $Z \rightarrow b\overline{b} \ (7 \times 10^8)$

channel	Sample size	Tera-Z yield	
$B_S^0 \to \phi \phi, \phi \to K^+ K^-$	630	561,600	
$B^0 \to \pi^+ \pi^-$	2,900	2,585,142	
$B^0 \to K^+ K^-$	44	39,222	
$B_s^0 \to \pi^+ \pi^-$	98	87,360	
$B_s^0 \to K^+ K^-$	3,739	3,333,051	

Demonstration of the significance of PID: $B_s^0 o \phi \phi$

Improved signal sensitivity with PID

Demonstration of the significance of PID: $B^0/B_s^0 \rightarrow hh$

Improved signal sensitivity with PID

Activities on prototype test

- Prototype test at IHEP
 - A preamplifier is designed and tested with a drift tube using Sr-90 source
 - Preliminary tests show a promising future
- Further tests and optimization are on going

- Beam test organized by INFN group
- Cooperation between IHEP and INFN
 - Data taking
 - Data analysis
 - Optimizing DC simulation
 - Plan to apply ML algorithm on online FPGA

Summary

- A drift chamber with cluster counting technique for PID is proposed for CEPC the 4th conceptual detector
- $2\sigma K/\pi$ separation power is reached up to 20 GeV/c with waveform-based full simulation
- Physics sensitivity is improved significantly with PID in flavor physics with Delphes fast simulation
- Prototype test is ongoing

Thanks!

Backup

Deep learning based algorithm

Peak finding with LSTM

- With Long short-term memory (LSTM) model
- Labels: Signal or Noise.
- Features: Slide windows of peak candidates, with a shape of (15, 1)

\Rightarrow A binary classification problem

Clusterization with DGCNN

- GNN-based architecture: DGCNN
- Massage passing through neighbor nodes ⇔ Clusterization of electron timings from the same primary cluster

Comparison between LSTM and derivative model

Better AUC for LSTM, due to the better pile-up recovery ability of the LSTM model

22

Performance with deep learning based algorithm

Method		μ	σ	σ/μ
Input		16.53	3.93	23.8%
Output	Classical algorithm	18.67	4.60	24.6%
	ML	16.65	4.06	24.4%

Tracking resolution

CDR K/ π K/p S

Event selection for $B_s^0 \rightarrow \phi \phi$

- $Z \rightarrow b\overline{b} \rightarrow di jet$, so the following selections is done in each jet
- And the $M_{\phi\phi}$ in [5.1,5.6] is retained.
- Final state: $K^+K^-K^+K^-$
- Kaon PID(dN/dx +TOF)
 - $Prob_K > Prob_{\pi}$ && $Prob_K > Prob_p$
- ϕ reconstruction
 - $\left| M_{K^+K^-} m_{\phi} \right| < 0.02 \; GeV/c^2$
 - $0.6 \times leading E_{\phi} + subleading E_{\phi} > 15 \text{ GeV}$

Event selection for $B_s^0/B^0 \rightarrow hh$

- $Z \rightarrow b\overline{b} \rightarrow di jet$, so the following selections is done in each jet
- And the M_{hh} in [5.2,5.5] is retained.
- Final state: $K^+K^-/\pi^+\pi^-$
- PID(dN/dx +TOF)
 - K: $Prob_K > Prob_{\pi}$ && $Prob_K > Prob_p$
 - π : $Prob_{\pi} > Prob_{K}$ && $Prob_{\pi} > Prob_{p}$
- K/ π criteria
 - Pt > 5 GeV
- Reconstruct $B^0 \& B_s^0$ in $M_{hh} \in [5.2, 5.5]$ GeV
 - $\theta_{hh} < 0.6$

Signal samples

