

中國科學院為能物招補完備 Institute of High Energy Physics Chinese Academy of Sciences

The R&D of the FPMTs for High Energy Physics Detectors

Lishuang Ma (马丽双), Qi Wu (吴琪) Tutor: Sen Qian (钱森) On behalf of the FPMT R&D Group

The CEPC Workshop on Flavor Physics, New Physics and Detector Technologies

Fudan university, ShangHai

Aug 17, 2023

Outline

- 1. Fast Timing Detectors used in HEPs
- 2. R&D of FPMT
- 3. Time resolution of FPMT in Beam test

1.1.1 Potential Applications of Fast timing detector-TORCH

• The σ_{TOF} requirement dictates timing single photons to a precision of **70 ps** for ~30 detected photons, and ideal time resolution of fast timing detector is ~33 ps from calculation. Multi-anode MCP-PMT is considered as the detector option.

Ref: 1.Neville Harnew, TheTORCH time of flight detector and status of R&D, 31 March 2020 (report of 5th Workshop on LHCb Upgrade II) 2. Ulrik Egede. LHCb PID system & TORCH detectorLHCb PID system & TORCH detector 2023.08.14

1.1.2 Potential Applications of Fast Timing Detector-EIC-RICH

> The U.S. has approved the construction of EIC in BNL

- > 10 GeV/c electrons + 100 GeV/c protons
- Measure the three-dimensional distribution of gluons inside nucleons and nuclei, the mystery of proton spin, the mystery of mass, the saturation of gluons, etc
- EPIC is one of the detectors on the collision point
- MCP-PMT can be substituted (optimized according to both time-sensitive):
 - <20ps TOF: LGAD</p>
 - Dual-RICH position-sensitive photon detector: Currently using SiPM/MaPMT, consider LAPPD
 - Calorimeter's antimagnetic photon detector: tentative SiPM/MaPMT

	Default option	Single photon time resolution	Spatial resolution equivalent	Sensor area
E-endcap mRICH	SiPMs	best possible	~3mm pixels	64 ~10x10 cm ² spots
Barrel DIRC	MCP-PMTs	<100 ps	~3mm pixels	~0.65 m ² total
H-endcap dRICH	SiPMs	~100 ps	~3mm pixels	~3.10 m ² total

Ref: Brookhaven Lab R&D on Capacitively Coupled LAPPDs with 2D Pixelated Readout Planes for Ring Imaging Cherenkov Detectors, report in Ad hoc LAPPD workshop

1.1.3 Potential Applications of Fast Timing Detectors-CEPC-PID

Supposing TOF information with **a 50 ps time resolution**, accounting for the time resolution and the location of the ECAL, the TOF information can provide K/ π (K / p) separation **better than 2.5** σ up to 2.1 (4.0) GeV/c. By combining TOF and dE / dx, more than 2.0 (1.4) σ K/ π (K / p) separation can be achieved up to 20 GeV/c.

1.1.4 Potential Applications of Fast timing Detector- STCF

The STCF Detector Conceptual Design

The DTOF detector of STCF

The DIRC-like high-resolution TOF detector is proposed.

For the requirement of $4\sigma \pi/K@2$ GeV/c, the system time resolution should be < 50 ps, the intrinsic time resolution should be < 30 ps.

Multi-anode MCP-PMT is considered as the detetcor option.

Ref: Qian Liu, R&D for the STCF PID detector, 2023.08.15

1.2 Fast-timing Detectors

SiPM

Dynode -PMT

MCP -PMT (FPMT)

	SiPM	Dynode-PMT	MCP-PMT (Fast PMT)	
Time resolution	~100 ps	~200 ps	~40 ps	
Channels	Extensible array	8×8	64×64 (max)	
Gain	10⁵~10⁶	106~107	10⁶~10⁷	
Detection Efficiency	30~50%	20~30%	20~30%	
Magnetic field resistance	Yes	No	Yes	

FPMT has ultra-fast time resolution and excellent magnetic field resistance!

1.3 FPMT Products

Photonis (France)

LAPPD(USA)

Photek(UK)

Manufacturers	Hamamatsu	Photonis	LAPPD	Photek
Туре	R10754-07-M16	XP85012	LAPPD	MAPMT253
Sensitive area/mm	23×23	53×53	20×20	53×53
Gain	1.0 x 10 ⁶	1.0 x 10 ⁵	7.5x 10 ⁶	1.0 x 10 ⁶
QE@Peak	~20%@380nm	22%@380nm	22.3%@365nm	21%@290nm
TTS@SPE/ps	31(RMS)	~120(RMS)	64(RMS)	<40 (RMS)
Rise time/ps	195	600	850	<175
Anodes	4×4	8×8	28 strip lines	64×64

Expensive!

2.1 R&D of Fast Timing PMT

IHEP Design: After the successfully 20 inch MCP-PMT R&D, the PMT group in IHEP try to design and produce the 2 inch FPMT, with fast time resolution and low cost!

2.2 R&D of Fast Timing PMT

--There are **5** Core technologies need to develop to produce this new type of 2 inch Fast MCP-PMTs;

--We have the experience of the PC, MCP, but need do more research on the Sealing, the Anode, and the Electronics.

his new type of 2 inch

4X4 Channles, 2 inch

8X8 Channles, 2 inch

2X2 Channles, 1 inch

Ref: Qian Sen, The R&D of the Ultra Fast 8X8 Readout MCP-PMTs, reported in ICHEP2020, 30 July, 2020

2.3 FPMT from single anode to 8*8 anode

2*2 Anodes FPMT

4*4 Anodes FPMT

2.4 Performance of single anode FPMT

Anode Optimization

After anode structure optimization, the time performance has been greatly improved!

> Waveform comparison

	HV/V	Gain	P/V	Amp(SPE)	RT	FT	Width	TTS@SPE	TTS@MPE
Photek 210	-4700	2.9E6	2.0	93 mV	96 ps	350 ps	190ps	45 ps	10 ps
Plate-Anode	-2000	1.9E6	28.8	7 mV	1.4 ns	1.4 ns	1.8 ns	70 ps	25 ps
Conical-Anode	-3181	2.6E6	6.3	53 mV	150 ps	420 ps	330 ps	27 ps	5 ps

2.5 Performance of 8*8 anodes FPMT

Uniformity of gain

Uniformity of TTS

	HV/V	Gain	P/V	Amp(SPE)	RT	FT	Width	TTS@SPE	TTS@MPE
Photek-253	-2600	1.2E7	11.2	113 mV	490 ps	1.1 ns	~1ns	45 ps	16 ps
8*8 Anodes	-1500	3.9E6	18.6	45 mV	334 ps	660 ps	~900ps	40 ps	10 ps

2.6 Performance of 8*8 anodes Cherenkov Radiator Window-FPMT

CRW-FPMT can detect particles directly!

	HV/V	Gain	P/V	幅度(SPE)	RT	FT	Pulse Width	TTS @SPE
CRW-FPMT-1	-2004	6.0E6	7.4	99.4 mV	215.3 ps	490.0 ps	424.0 ps	27.2 ps
CRW-FPMT-2	-1500	8.7E6	5.9	132.7 mV	287.0 ps	347.1 ps	467.1ps	31.2 ps

3.1 Beam test of 8*8 FPMT at Fermi Lab

- Beam: 120GeV Proton (Fermi)
- Crystal: LYSO & BGO
- PMT: 8*8 FPMT
- DAQ: CAEN V1742~50ps;
- Carried out by Zhenyu Ye (UIC)

Zhihong Ye (THU)

3.2 Beam test of 8*8 FPMT at CERN

- Beam: (CERN) 108GeV Muon
- Scintillator:
 Pb Glass, Quartz Glass;
- PMT: 8*8 FPMT
 TTS = 50ps@SPE;
- **DAQ:** 15 GSa/s ~ 25ps

Lead Glass + FPMT

Quartz Glass + FPMT

Coincidence time jitter~63 ps Single tube Time jitter ~**45ps**

Coincidence time jitter~56 ps Single tube Time jitter ~**40ps**

Summary

- FPMT tubes from single anode to 8*8 anode have been successfully developed.
- The TTS@SPE of single anode FPMT and 8*8 anode FPMT have both achieved **30 ps**.
- Beam test results are limited by electronics, and more detailed tests will be performed for the new generation of FPMT in the future.
- Looking forward to the application of FPMT in HEPs.

Potential Applications of FPMT-CEPC-ECAL

5D crystal ECAL (3D spatial + energy + time)

- FPMT has good singlephoton detection capability
- FPMT has big sensitive area
- One FPMT can achieve a

maximum of 64*64 channels of readout

FPMT+LYSO ->excellent time

resolution

• Low noise

Potential Applications of FPMT-TOF-PET

Ref1:Ota, R., et al. Medical Physics 45.5(2018). Ref2: Oingguo Xie, et al. Concentual Design and Sim

Ref2: Qingguo Xie, et al. Conceptual Design and Simulation Study of an ROI-Focused Panel-PET Scanner. PLoS ONE 8(8): e72109. CTR: Coincidence Time resolution SPTR: Single Photon Time Resolution, characterized by TTS@SPE

Thanks for your attention!