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The Koide formula

A relation of charged lepton mass ratios

▶ The Koide formula: (Koide ’82, ’83)

K =
me +mµ +mτ(√

me +
√
mµ +

√
mτ

)2 =
2

3
.

▶ Predicting mτ = 1777MeV from me and mµ data in 1980’s.
▶ mτ = 1783+3

−4MeV, DELCO ’78 (1783.5±4.2MeV in PDG ’80)

until mτ = 1776.9+0.4
−0.5±0.2MeV, BES ’92.

▶ PDG ’22 data of charged lepton masses:
▶ me = 0.51099895000±0.00000000015MeV.
▶ mµ = 105.6583755±0.0000023MeV.
▶ mτ = 1776.86±0.12MeV (1776.91±0.12+0.10

−0.13MeV, BES3 ’14).

▶ The Koide’s character from PDG ’22 (10−5 precision and 1-σ):

K = 0.6666610±0.0000068 =
2

3
× (0.999991±0.000011).



Developments

Geometric visualization
▶ Consider M⃗ =

(√
me ,

√
mµ,

√
mτ

)
, I⃗ = (1, 1, 1), then

K−1 =
(
I⃗ · M⃗/∥M⃗∥

)2
= 3 cos2 θ(I⃗ , M⃗).

▶ K = 2/3 sets the angle θ(I⃗ , M⃗) = π/4. (Foot ’94)

Radiative corrections to running masses

▶ QED correction shifts Krun by 10−3. (Li&Ma ’06, Xing&Zhang ’06)

▶ Gauging the flavor symmetry introduces another correction
which may cancel the QED correction to Krun. (Sumino ’08)

Analogy in quark and neutrino sectors

▶ Empirical formulas for masses and mixing are conjectured.

▶ Not as convincing as in the charged lepton sector.



Explanation

Coincidence?
▶ Around K = 2/3 is not statistically favored from random

distribution of masses or Yukawa couplings.

▶ Krun ̸= 2/3 considering radiative corrections to running
masses, the known cancellation need some tuning.

▶ Use pole masses, running masses or on-shell masses?

Sign of new physics?

▶ Notice the square roots in the Koide formula, try to build a
model giving the charged lepton mass matrix M ∝ ΦΦ, and
then K = Tr(ΦΦ)/(Tr Φ)2 ≡ [ΦΦ]/[Φ]2.

▶ Promote Φ to be a Hermitian nonet scalar in 3⊗ 3∗ = 8⊕ 1
of the U(3) flavor symmetry, try to build a model setting ⟨Φ⟩
(⟨Φ⟩ ≡ Φ if there is no ambiguity) and then K .

▶ Try to naturally explain K = 2/3 from hidden symmetries.

▶ Candidates: the see-saw type model and the Yukawaon model.



The seesaw-type model

Seesaw to M ∝ ΦΦ
▶ Introduce flavor nonet and singlet scalars: Φi

j , S and new

heavy fermions: LiL = (N i
L,E

i
L), E i

R . (Koide ’90)

▶ The dimension-five effective operators:

L(5) = −y0
Λ

(
l̄LiΦ

i
jHE

j
R + L̄LiΦ

i
jHe

j
R + L̄LiSHE

i
R

)
+ h.c..

▶ The seesaw-type mass terms from ⟨H⟩ =
(
0, v/

√
2
)
:

L = −ēLmLER − ĒLmReR − ĒLMEER + h.c.

= −
(
ēLi ĒLj

)( 0 mi
Ll

mj
Rk MEδ

j
l

)(
ekR
E l
R

)
+ h.c.,

with mi
Ll = mi

Rl =
y0v√
2Λ
Φi
j , ME = y0v√

2Λ
S .

▶ Giving ME ≫ ∥mL∥ = ∥mR∥, the block-diagonalized mass
matrix: M i

Ej ≈ MEδ
i
j , M i

ej ≈ mi
LkM

−1
E mk

Rj =
y0v√
2ΛS

Φi
kΦ

k
j .



The Yukawaon model

SUSY Yukawaons to M ∝ ΦΦ
▶ Introduce two flavor nonet scalars: the Yukawaon Y i

j replacing

the Yukawa coupling coefficients and the ur-Yukawaon Φi
j ,

both are promoted to chiral superfields. (Koide ’08)

▶ The dimension-five effective operators and the superpotential:

L(5) = −y0
Λ
l̄LiY

i
j He

j
R + h.c.,

W0 = λA[ΦΦA] + µA[YA] +W (Φ, ϕa),

with another flavor nonet Ai
j and more chiral superfields ϕa.

▶ At a SUSY vacuum, the F-term equations ∂AW0 = ∂YW0 = 0
set Ai

j = 0 and Y i
j = −λA

µA
Φi
kΦ

k
j .

▶ ⟨H⟩ =
(
0, v/

√
2
)
leads to the charged lepton mass matrix:

M i
ej =

y0v√
2Λ
Y i
j = − y0λAv√

2ΛµA
Φi
kΦ

k
j .

▶ The F-term equations ∂ΦW = ∂ϕaW = 0 fix Φ.



The superpotential from symmetries

W (Φ, ϕa) for ⟨Φ⟩
▶ The superpotential: (Liang&Sun ’20)

W = W1 +W2,

W1 =
1

2

(
ϕ′
1 ϕ′

2

)(µ′
11 µ′

12

µ′
12 µ′

22

)(
ϕ′
1

ϕ′
2

)
+
(
ϕ′
1 ϕ′

2

)(b′11 b′12
b′21 b′22

)(
[Φ8Φ8]
[Φ]2

)
,

W2 = µ0[ΦΦ] = µ0[Φ8Φ8] +
1

3
µ0[Φ]

2.

▶ Introducing an R-symmetry, ϕ′
1 and ϕ′

2 has charge 1, the
nonet Φ = Φ8 +

1
3 [Φ]I3×3 = Φa

8t
a + [Φ]t0 has charge 1/2.

▶ All renormalizable terms respecting the flavor symmetry and
the R-symmetry are included in W1.

▶ W2 breaks the R-symmetry with a nonzero µ0.



Simplification

Simplifying W by a field redefinition

▶ Off-diagonalize the quadratic part of W1:

PT

(
µ′
11 µ′

12

µ′
12 µ′

22

)
P =

(
0 µ3

µ3 0

)
, P =

( µ3µ±
2∆ −µ22

µ±

−µ3µ11
2∆ 1

)
,

with ∆ = µ2
12 − µ11µ22, µ± = µ12 ±

√
∆.

▶ The field and coefficient redefinition:(
ϕ′
1

ϕ′
2

)
= P

(
ϕ1

ϕ2

)
,

(
b′11 b′12
b′21 b′22

)
=

(
PT

)−1
(
b11 b12
b21 b22

)
.

▶ W is simplified after the redefinition:

W = µ0[ΦΦ]+µ3ϕ1ϕ2+
(
ϕ1 ϕ2

)(b11 b12
b21 b22

)(
[ΦΦ]− 1

3 [Φ]
2

[Φ]2

)
.



Towards the modified Koide formula

Setting Φ and K

▶ Φ ∈ u(3)C ∼= gl(3,C) = C3×3, so the F-term equations for Φ:
∂Φ8W = ∂[Φ]W = 0 are equivalent to ∂Φi

j
W = 0.

▶ Assuming Φ gets a non-zero Hermitian expectation value, the
F-term equations ∂ΦW = ∂ϕaW = 0 lead to

K =
[ΦΦ]

[Φ]2
=

2

3
×
(
1− a02 − 9a4

2a02 − 3a2

)
,

µ0µ3 =

(
2a02

(
K − 1

3

)
+ a2

)
[Φ]2,

with a02 = b11b21, a2 = b11b22 + b12b21, a4 = b12b22.

▶ K is modified by two effective parameters a02/a2 and a4/a2.

▶ Nonzero µ0 and µ3 are generally needed for a nonzero Φ.

▶ Building a scalar potential can also set a non-zero Φ, but it is
not protected by the SUSY non-renormalization theorem.



Discussion

Tuning or lack of prediction power?

▶ The Cauchy-Schwarz inequality and positive mass condition
leads to K ∈ [1/3, 1], corresponding to a02−9a4

2a02−3a2
∈ [−1/2, 1/2].

▶ Adjusting parameters can fit any K in the range.

▶ K = 2/3 corresponds to a02 − 9a4 = 0.

▶ In particular, a02 = a4 = 0 corresponds to the superpotential:

W = µ0[ΦΦ] + µ3ϕ1ϕ2 + b11ϕ1[Φ8Φ8] + b22ϕ2[Φ]
2,

which is used in previous literature. (Koide ’18)

▶ Currently no satisfactory reason to choose such a W .

Other pheno

▶ Pheno from the dimension-five operators or UV completion?

▶ Gauged flavor symmetry to cancel raidative corrections?


