The (modified) Koide formula from flavor nonet scalars

Zheng Sun 孙铮

Sichuan University
CEPC Workshop, Shanghai, 2023.8.16

Zhengchen Liang \& Zheng Sun, 2007.05878

The Koide formula

A relation of charged lepton mass ratios

- The Koide formula: (Koide '82, '83)

$$
K=\frac{m_{e}+m_{\mu}+m_{\tau}}{\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}}\right)^{2}}=\frac{2}{3} .
$$

- Predicting $m_{\tau}=1777 \mathrm{MeV}$ from m_{e} and m_{μ} data in 1980's.
- $m_{\tau}=1783_{-4}^{+3} \mathrm{MeV}$, DELCO '78 ($1783.5 \pm 4.2 \mathrm{MeV}$ in PDG '80) until $m_{\tau}=1776.9_{-0.5}^{+0.4} \pm 0.2 \mathrm{MeV}$, BES ' 92 .
- PDG '22 data of charged lepton masses:
- $m_{e}=0.51099895000 \pm 0.00000000015 \mathrm{MeV}$.
- $m_{\mu}=105.6583755 \pm 0.0000023 \mathrm{MeV}$.
- $m_{\tau}=1776.86 \pm 0.12 \mathrm{MeV}\left(1776.91 \pm 0.12_{-0.13}^{+0.10} \mathrm{MeV}\right.$, BES3 '14).
- The Koide's character from PDG '22 (10^{-5} precision and 1- σ):

$$
K=0.6666610 \pm 0.0000068=\frac{2}{3} \times(0.999991 \pm 0.000011)
$$

Developments

Geometric visualization

- Consider $\vec{M}=\left(\sqrt{m_{e}}, \sqrt{m_{\mu}}, \sqrt{m_{\tau}}\right), \vec{l}=(1,1,1)$, then

$$
K^{-1}=(\vec{l} \cdot \vec{M} /\|\vec{M}\|)^{2}=3 \cos ^{2} \theta(\vec{I}, \vec{M})
$$

- $K=2 / 3$ sets the angle $\theta(\vec{l}, \vec{M})=\pi / 4$. (Foot '94)

Radiative corrections to running masses

- QED correction shifts $K_{\text {run }}$ by 10^{-3}. (Li\&Ma '06, Xing\&Zhang '06)
- Gauging the flavor symmetry introduces another correction which may cancel the QED correction to $K_{\text {run }}$. (Sumino '08)

Analogy in quark and neutrino sectors

- Empirical formulas for masses and mixing are conjectured.
- Not as convincing as in the charged lepton sector.

Explanation

Coincidence?

- Around $K=2 / 3$ is not statistically favored from random distribution of masses or Yukawa couplings.
- $K_{\text {run }} \neq 2 / 3$ considering radiative corrections to running masses, the known cancellation need some tuning.
- Use pole masses, running masses or on-shell masses?

Sign of new physics?

- Notice the square roots in the Koide formula, try to build a model giving the charged lepton mass matrix $M \propto \Phi \Phi$, and then $K=\operatorname{Tr}(\Phi \Phi) /(\operatorname{Tr} \Phi)^{2} \equiv[\Phi \Phi] /[\Phi]^{2}$.
- Promote Φ to be a Hermitian nonet scalar in $\mathbf{3} \otimes \mathbf{3}^{*}=\mathbf{8} \oplus \mathbf{1}$ of the $U(3)$ flavor symmetry, try to build a model setting $\langle\Phi\rangle$ $(\langle\Phi\rangle \equiv \Phi$ if there is no ambiguity) and then K.
- Try to naturally explain $K=2 / 3$ from hidden symmetries.
- Candidates: the see-saw type model and the Yukawaon model.

The seesaw-type model

Seesaw to $M \propto \Phi \Phi$

- Introduce flavor nonet and singlet scalars: Φ_{j}^{i}, S and new heavy fermions: $L_{L}^{i}=\left(N_{L}^{i}, E_{L}^{i}\right), E_{R}^{i}$. (Koide '90)
- The dimension-five effective operators:

$$
\mathcal{L}^{(5)}=-\frac{y_{0}}{\Lambda}\left(\bar{l}_{L i} \Phi_{j}^{i} H E_{R}^{j}+\bar{L}_{L i} \Phi_{j}^{i} H e_{R}^{j}+\bar{L}_{L i} S H E_{R}^{i}\right)+\text { h.c. }
$$

- The seesaw-type mass terms from $\langle H\rangle=(0, v / \sqrt{2})$:

$$
\begin{aligned}
\mathcal{L} & =-\bar{e}_{L} m_{L} E_{R}-\bar{E}_{L} m_{R} e_{R}-\bar{E}_{L} M_{E} E_{R}+\text { h.c. } \\
& =-\left(\begin{array}{cc}
\bar{e}_{L i} & \bar{E}_{L j}
\end{array}\right)\left(\begin{array}{cc}
0 & m_{L I}^{i} \\
m_{R k}^{j} & M_{E} \delta_{l}^{j}
\end{array}\right)\binom{e_{R}^{k}}{E_{R}^{l}}+\text { h.c. }
\end{aligned}
$$

with $m_{L I}^{i}=m_{R I}^{i}=\frac{y_{0} v}{\sqrt{2} \Lambda} \Phi_{j}^{i}, M_{E}=\frac{y_{0} v}{\sqrt{2} \Lambda} S$.

- Giving $M_{E} \gg\left\|m_{L}\right\|=\left\|m_{R}\right\|$, the block-diagonalized mass matrix: $M_{E j}^{i} \approx M_{E} \delta_{j}^{i}, M_{e j}^{i} \approx m_{L k}^{i} M_{E}^{-1} m_{R j}^{k}=\frac{y_{0} v}{\sqrt{2} \Lambda S} \Phi_{k}^{i} \Phi_{j}^{k}$.

The Yukawaon model

SUSY Yukawaons to $M \propto \Phi \Phi$

- Introduce two flavor nonet scalars: the Yukawaon Y_{j}^{i} replacing the Yukawa coupling coefficients and the ur-Yukawaon Φ_{j}^{i}, both are promoted to chiral superfields. (Koide '08)
- The dimension-five effective operators and the superpotential:

$$
\begin{gathered}
\mathcal{L}^{(5)}=-\frac{y_{0}}{\Lambda} \bar{L}_{L i} Y_{j}^{i} H e_{R}^{j}+\text { h.c. }, \\
W_{0}=\lambda_{A}[\Phi \Phi A]+\mu_{A}[Y A]+W\left(\Phi, \phi_{a}\right),
\end{gathered}
$$

with another flavor nonet A_{j}^{i} and more chiral superfields ϕ_{a}.

- At a SUSY vacuum, the F-term equations $\partial_{A} W_{0}=\partial_{Y} W_{0}=0$ set $A_{j}^{i}=0$ and $Y_{j}^{i}=-\frac{\lambda_{A}}{\mu_{A}} \Phi_{k}^{i} \Phi_{j}^{k}$.
- $\langle H\rangle=(0, v / \sqrt{2})$ leads to the charged lepton mass matrix: $M_{e j}^{i}=\frac{y_{0} \vee}{\sqrt{2} \Lambda} Y_{j}^{i}=-\frac{y_{0} \lambda_{A} V}{\sqrt{2} \Lambda \mu_{A}} \Phi_{k}^{i} \Phi_{j}^{k}$.
- The F-term equations $\partial_{\Phi} W=\partial_{\phi_{a}} W=0$ fix Φ.

The superpotential from symmetries

$W\left(\Phi, \phi_{a}\right)$ for $\langle\Phi\rangle$

- The superpotential: (Liang\&Sun '20)

$$
\begin{aligned}
W= & W_{1}+W_{2} \\
W_{1}= & \frac{1}{2}\left(\begin{array}{ll}
\phi_{1}^{\prime} & \phi_{2}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\mu_{11}^{\prime} & \mu_{12}^{\prime} \\
\mu_{12}^{\prime} & \mu_{22}^{\prime}
\end{array}\right)\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}} \\
& +\left(\begin{array}{ll}
\phi_{1}^{\prime} & \phi_{2}^{\prime}
\end{array}\right)\left(\begin{array}{ll}
b_{11}^{\prime} & b_{12}^{\prime} \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right)\binom{\left[\Phi_{8} \Phi_{8}\right]}{[\Phi]^{2}}, \\
W_{2}= & \mu_{0}[\Phi \Phi]=\mu_{0}\left[\Phi_{8} \Phi_{8}\right]+\frac{1}{3} \mu_{0}[\Phi]^{2} .
\end{aligned}
$$

- Introducing an R-symmetry, ϕ_{1}^{\prime} and ϕ_{2}^{\prime} has charge 1, the nonet $\Phi=\Phi_{8}+\frac{1}{3}[\Phi] \|_{3 \times 3}=\Phi_{8}^{a} t^{a}+[\Phi] t^{0}$ has charge $1 / 2$.
- All renormalizable terms respecting the flavor symmetry and the R-symmetry are included in W_{1}.
- W_{2} breaks the R-symmetry with a nonzero μ_{0}.

Simplification

Simplifying W by a field redefinition

- Off-diagonalize the quadratic part of W_{1} :

$$
P^{\top}\left(\begin{array}{ll}
\mu_{11}^{\prime} & \mu_{12}^{\prime} \\
\mu_{12}^{\prime} & \mu_{22}^{\prime}
\end{array}\right) P=\left(\begin{array}{cc}
0 & \mu_{3} \\
\mu_{3} & 0
\end{array}\right), \quad P=\left(\begin{array}{cc}
\frac{\mu_{3} \mu_{ \pm}}{2 \Delta} & -\frac{\mu_{22}}{\mu_{ \pm}} \\
-\frac{\mu_{3} \mu_{11}}{2 \Delta} & 1
\end{array}\right)
$$

with $\Delta=\mu_{12}^{2}-\mu_{11} \mu_{22}, \mu_{ \pm}=\mu_{12} \pm \sqrt{\Delta}$.

- The field and coefficient redefinition:

$$
\binom{\phi_{1}^{\prime}}{\phi_{2}^{\prime}}=P\binom{\phi_{1}}{\phi_{2}}, \quad\left(\begin{array}{ll}
b_{11}^{\prime} & b_{12}^{\prime} \\
b_{21}^{\prime} & b_{22}^{\prime}
\end{array}\right)=\left(P^{\top}\right)^{-1}\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) .
$$

- W is simplified after the redefinition:

$$
W=\mu_{0}[\Phi \Phi]+\mu_{3} \phi_{1} \phi_{2}+\left(\begin{array}{ll}
\phi_{1} & \phi_{2}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\binom{[\Phi \Phi]-\frac{1}{3}[\Phi]^{2}}{[\Phi]^{2}} .
$$

Towards the modified Koide formula

Setting Φ and K

- $\Phi \in \mathfrak{u}(3)_{\mathbb{C}} \cong \mathfrak{g l}(3, \mathbb{C})=\mathbb{C}^{3 \times 3}$, so the F-term equations for Φ : $\partial_{\Phi_{8}} W=\partial_{[\Phi]} W=0$ are equivalent to $\partial_{\Phi_{j}^{\prime}} W=0$.
- Assuming Φ gets a non-zero Hermitian expectation value, the F-term equations $\partial_{\phi} W=\partial_{\phi_{a}} W=0$ lead to

$$
\begin{aligned}
& K=\frac{[\Phi \Phi]}{[\phi]^{2}}=\frac{2}{3} \times\left(1-\frac{a_{02}-9 a_{4}}{2 a_{02}-3 a_{2}}\right), \\
& \mu_{0} \mu_{3}=\left(2 a_{02}\left(K-\frac{1}{3}\right)+a_{2}\right)[\phi]^{2},
\end{aligned}
$$

with $a_{02}=b_{11} b_{21}, a_{2}=b_{11} b_{22}+b_{12} b_{21}, a_{4}=b_{12} b_{22}$.

- K is modified by two effective parameters a_{02} / a_{2} and a_{4} / a_{2}.
- Nonzero μ_{0} and μ_{3} are generally needed for a nonzero Φ.
- Building a scalar potential can also set a non-zero Φ, but it is not protected by the SUSY non-renormalization theorem.

Discussion

Tuning or lack of prediction power?

- The Cauchy-Schwarz inequality and positive mass condition leads to $K \in[1 / 3,1]$, corresponding to $\frac{a_{02}-9 a_{4}}{2 a_{02}-3 a_{2}} \in[-1 / 2,1 / 2]$.
- Adjusting parameters can fit any K in the range.
- $K=2 / 3$ corresponds to $a_{02}-9 a_{4}=0$.
- In particular, $a_{02}=a_{4}=0$ corresponds to the superpotential:

$$
W=\mu_{0}[\Phi \Phi]+\mu_{3} \phi_{1} \phi_{2}+b_{11} \phi_{1}\left[\Phi_{8} \Phi_{8}\right]+b_{22} \phi_{2}[\Phi]^{2},
$$

which is used in previous literature. (Koide '18)

- Currently no satisfactory reason to choose such a W.

Other pheno

- Pheno from the dimension-five operators or UV completion?
- Gauged flavor symmetry to cancel raidative corrections?

