Search for heavy resonances in final states with 4ℓ

 and missing transverse energy or jetsAbdualazem Fadol
AIs from the HDBS approval meeting

List of Als received during the HDBS approval

(1) Need to check overlap removal for $\sigma \ell$ between two sets of $A \rightarrow Z H$ samples.
(2) For the $A \rightarrow Z H$, what happens in events with 6 leptons then? How are the 4 leptons chosen?
(3) Are signal regions orthogonal? Yes, but the diagram and text need to be improved.
(4) Is the number of b-jets a subset of the number of central jets?
(5) Confirm that the interpolated/generated behaviour is similar for many mass points (difference between interpolated and generated is smaller than the signal modelling variations) and if so, just use the interpolated/generated difference as the uncertainty.
(6) Make sure that there's nothing wrong/missing. Try to artificially inflate a leading uncertainty and see if it induces a constraint.
(7) Add category names to each label (rather than numbers) and add a few more mass points so that we can see how consistent the normalization factors are.
(8) Do a comparison for a low mass (high stats) and a high mass (low stats) point.

Al number (1)

Need to check overlap removal for $\sigma \ell$ between two sets of $A \rightarrow Z H$ samples. Answer:
\square Forcing the total number of lepton to be exactly 4ℓ in the generation of the $A \rightarrow Z(\rightarrow 2 \ell) H(\rightarrow 2 \ell+X)$ signal, so X is everything except 2ℓ in this case.

```
#- The A->Z(->X)H(->4L) signal generation -%
#-........
import model 2HDM GF
define }p=guc\overline{d}su~c~d~s~b b~
define j=g u c d s u-c-d-s-b b-a
define vl = ve vm vt
deftne vL- = ve-vm-vt-
define l+= = e+ mu+ ta+
define l- = e-mu- ta-
define inc = ucd s u~ c~ d~ s~ b b~ e+ mu+ ta+ e-mu- ta- ve vm vt ve~ vm~ vt~
# Define multiparticle labels
# Specify process(es) to run
iff mA}>\textrm{mH}
        process += ""*
generate
output
#-
#- The A->Z(->2l)H(->2l+X) signal generation -%
```



```
process=" "
lmport model 2HDM_GF
deftine p = g u c d s u~ c~ d~ s~ b b~
define j}=gucd s u~ c~ d~ s~ b b~a
define vl = ve vm vt
define vL~ = ve~ vm~ vt~
define l+= e+ mu+
define l- = e- mu- 
# Define multiparticle labels
# Specify process(es) to run
If}\textrm{mA}>\textrm{mH}
    process += """
generate
output
MultiLeptonWtthParentFtlter.NLeptonsMLn = 4
MultiLeptonWithParentFilter.NLeptonsMax = 4
```


$$
X \rightarrow q / \nu
$$

There's no overlap between the two signals. However, we need to clarify that in the text, such as changing the symbol for one of the signals.

Al number (2)

\square For the $A \rightarrow Z H$, what happens in events with 6 leptons then? How are the 4 leptons chosen?
Answer: the following answer is provided by RD (HZZ framework expert and developer)When we find a quadruplet and there is an extra lepton above 12 GeV , passing isolation and d0 too, then we use a matrix element calculation based on the decay of the 4 leptons for all of the quads. Only in this case do we allow to 'change our minds' and pick the quad with the highest value for the ME. This is described (a bit) in the HZZ common support note.

Al number (3)

Are signal regions orthogonal? Yes, but the diagram and text need to be improved.
Answer: We improved the flowchart and the text for the signal regions.

Al number (4)

\square Is the number of b-jets a subset of the number of central jets?
Answer:
\square No, the number of b-jets is not a subset of the central jets.

Al number (5)

Confirm that the interpolated/generated behaviour is similar for many mass points (difference between interpolated and generated is smaller than the signal modelling variations) and if so, just use the interpolated/generated difference as the uncertainty.
Answer:

Al number (6)

\square Make sure that there's nothing wrong/missing. Try to artificially inflate a leading uncertainty and see if it induces a constraint.

$\left(m_{A}, m_{H}\right)=(510,380) \mathrm{GeV}$

Before inflating NPs

After inflating NPs
\square Inflating some nuisance parameters produces pulls and constrains on the parameters.

AI number (7)

Add category names to each label (rather than numbers) and add a few more mass points so that we can see how consistent the normalization factors are.

\square The background normalisation under the background-only hypothesis for different mass points is shown.

Al number (7)

Add category names to each label (rather than numbers) and add a few more mass points so that we can see how consistent the normalization factors are.

The background normalisation under the signal-plus background hypothesis for different mass points is shown.

Al number (8)

\square Do a comparison for a low mass (high stats) and a high mass (low stats) point.

Upper limit	$\left(m_{R}, m_{H}\right)=(410,240) \mathrm{GeV}$		$\left(m_{R}, m_{H}\right)=(8560,600) \mathrm{GeV}$	
	3780			
	Expected	Observed	Expected	Observed
Toys	0.347	0.562	0.125	0.102
Asymptotic	0.303	0.532	0.053	0.085
Toys/Asymptotic	1.145	1.056	2.358	1.200

Al number (8)

Al number (8)

Summary

\square

