

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

MC Study of LEG Design & Evaluation Process

Qi Wu, Ming Xu, Zhicheng Tang

Institute of High energy Physics, Chinese Academy of Science

11th.July. 2023

- ◆ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- ♦ 4. PSD Covered Leakage
- ♦ 5. Gamma Detection
- ♦ 6. Conclusion

1. Principle of LEG Design

- LEG: Accept low-energy gamma events (< 15 GeV) and reject charged cosmic rays with CALO & PSD signals.
- The LEG trigger is designed and evaluated from both rejection and acceptance ability.
- Rejection: Evaluated with veto efficiency. The leakage of charged CRs include:
 - ✓ PSD uncovered leakage
 - Gap between Bars
 - Gap between Sectors
 - Bottom uncovered area
- Acceptance: Accept gamma in certain energy range, evaluated with:
 - Acceptance of Gamma

The evaluation processes and standard are introduced and to be discussed here, a PSD Geo. is evaluated as an example.

✓ PSD covered no vetoed leakage

- PSD&CALO ROI defi. leakage
- PSD MIP detection leakage

✓ Mis veto rate

- ♦ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- ♦ 4. PSD Covered Leakage
- ♦ 5. Gamma Detection
- ♦ 6. Conclusion

2.1 Geometry

- Trapezoid PSD Unit 45°
- Top PSD: 89.8x5x1 [cm³]
- Side PSD: 92.5x5x1 [cm³]
- Head-to-Head Gap: 5 mm
- Side-to-Side Gap: 1.4 mm

To be analyzed – Another kind of geometry of PSD

- The trapezoidal section in the middle and the parallelogram section on both sides.
- To be studied and will not be discussed in this report.

2.2 Data Production

The data production is based on HERDOS software framework

Particle	Counts	Energy Distribution	Angular distribution		
Proton	5e7	0-70GeV, Evenly distributed	Spherical source with 1.8m radius, 4pi, cos angular distribution		
Proton	1e8	0-10GeV, Pow Law distributed with index = -1	Spherical source with 1.8m radius, 4pi, cos angular distribution		
Electron	5e7	0-30GeV, Evenly distributed	Spherical source with 1.8m radius, 4pi, cos angular distribution		
Gamma	5e7	0-30GeV, Evenly distributed	Spherical source with 1.8m radius, 4pi, cos angular distribution		

Total 1.5e8 proton & 5e7 electron events are produced for the

acceptance and trigger rate evaluation.

Total 5e7 gamma events are produced for acceptance calculation.

2.3 Earth Shielding & Flux

- The trigger rate is calculated by convoluting the acceptance and flux.
- > Flux above cutoff outside the earth shield (70°) are considered.
- Flux under cutoff (iso angular dis.) are all considered. (Over Estimate)
- > To be updated with flux with angular distribution.

- ◆ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- ♦ 4. PSD Covered Leakage
- ◆ 5. Gamma Detection
- ♦ 6. Conclusion

3.1 Geometric Leakage

Analyzed with geantino.

The whole geometric leakage is acceptable after the bottom leakage is reduced.

Top Leakage Distribution

3.2 CALO Trigger Region

- Use 6 bottom shell layer for veto, the global leakage can be decreased to 2‰.
- Based on the CALO trigger region v1
 provide by Jorge, a new trigger region def.
 v2 is used here for the LEG.

- ♦ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- 4. PSD Covered Leakage
 - 4.1 ROI Definition
 - 4.2 MIP Detection
- ♦ 5. Gamma Detection
- ♦ 6. Conclusion

4.1.1 PSD&CALO ROI

One CALO trigger region corresponds to several PSD sectors.

> The ROI is defined by finding the PSD hitting area of certain CALO fired region.

4.1.2 PSD&CALO ROI – Top CALO

4.1.3 PSD&CALO ROI – Side CALO 7

4.1.4 PSD&CALO ROI – Side CALO 6

4.1.5 PSD&CALO ROI Design – v1

- Based on 11 CALO trigger region, LEG ROI design v1 uses PSD region as the maximum matching unit.
- The ROI design v1 is based on the geantino hit, which is found to be unsuitable for proton events.

4.1.6 PSD&CALO ROI Design – v2

Analyzed with Proton events.

- Due to the shower leakage
 of proton, around 6% events
 deposit large energy in the
 opposite region.
- Full-Matching ROI Plan (v2)

LEG ROI v2

CALO	PSD	PSD Area [m ²]	
1,3-10	0,1,2,3,4	9.456	

- Once any PSD sector provide a veto signal, the event is rejected.
- The PSD responding area is the same for different CALO region.

- ♦ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- ♦ 4. PSD Covered Leakage
 - 4.1 ROI Definition
 - 4.2 MIP Detection
- ♦ 5. Gamma Detection
- ♦ 6. Conclusion

4.2.1 LEG trigger Logic

4.2.2 Light Transmission Efficiency

Two 6x6 mm² SiPM at each end

- The Collection Efficiency (CE) is simulation independently. (From Prof. Jifeng)
- The edep in PSD is weighted at step level with
 - CE which is linearly interpolated and normalized with the middle position.

Need to be verified with experimental results.

4.2.3 LEG PSD veto Efficiency

> 99.95% veto efficiency can be obtained with 0.55 MIP threshold for ROI v2.

> Still need to mention, the CE distribution should be checked with the experimental data.

4.2.4 LEG PSD Trigger Rate

ik for fluxes not shieled by earth lik for fluxes under cutoff shieled by earth										
Shell & Top CALO Trigger [MeV]	PSD veto [MIP]	Average TR Proton [Hz]	Max. TR Proton [Hz]	Average TR Electron [Hz]	Max. TR Electron [Hz]					
350	1/4	0.72	7.00	0.42	0.57					
350	1/3	0.85	8.58	0.46	0.66					
350	1/4	<mark>0.14+0.34</mark> (0.48)	<mark>1.68+0.38</mark> (2.06)	<mark>0.32+7.64</mark> (7.96)	<mark>0.45+9.0</mark> (9.45)					
350	1/3	<mark>0.18+0.36</mark> (0.54)	<mark>2.07+0.40</mark> (2.47)	<mark>0.35+8.35</mark> (8.70)	<mark>0.50+9.7</mark> (10.2)					
	not shieled by Shell & Top CALO Trigger [MeV] 350 350 350 350	Shell & Top CALO Trigger [MeV]PSD veto [MIP]3501/43501/43501/33501/41/31/4	Shell & Top CALO Trigger [MeV]PSD veto [MIP]Average TR Proton [Hz] 350 $1/4$ 0.72 350 $1/3$ 0.85 350 $1/4$ $0.14+0.34$ (0.48) 350 $1/3$ $0.18+0.36$ (0.54)	Shell & Top CALO Trigger [MeV] PSD veto [MIP] Average TR Proton [Hz] Max. TR Proton [Hz] 350 1/4 0.72 7.00 350 1/3 0.85 8.58 350 1/4 0.14+0.34 (0.48) 1.68+0.38 (2.06) 350 1/3 0.18+0.36 (0.54) 2.07+0.40 (2.47)	Not shieled by earthTR for fluxes under cutoff shieled by earthShell & Top CALO Trigger [MeV]PSD veto [MIP]Average TR Proton [Hz]Max. TR Proton [Hz]Average TR Electron [Hz]350 $1/4$ 0.72 7.00 0.42 350 $1/3$ 0.85 8.58 0.46 350 $1/4$ $0.14+0.34$ (0.48) $1.68+0.38$ (2.06) $0.32+7.64$ (7.96)350 $1/3$ $0.18+0.36$ (0.54) $2.07+0.40$ (2.47) $0.35+8.35$ (8.70)					

- ROI v2 can greatly improve the veto efficiency and lower the trigger rate.
- The trigger rate for fluxes under cutoff and shieled by earth is high, which is over-estimated.
- The flux is to be updated to be angular dependent.
 The equipment box is also to be added.

- ◆ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- ♦ 4. PSD Covered Leakage
- ♦ 5. Gamma Detection
 - 5.1 Acceptance
 - 5.2 False veto Rate

♦ 6. Conclusion

5.1 Gamma Acceptance

350

TRv1 – 100 MeV

Acceptance and trigger rate are both lowered by introducing CALO bottom veto.

1/4

0.7

7.0

5.2.1 Mis Veto - Event Rate

False Veto: Gamma Events vetoed by a charged particle arriving at the same electronic coincidence time window.

- The extrapolation of electron will greatly affect the results.
- > An event rate = 2 Hz/cm^2 is used for further calculation.

5.2.2 False veto Rate (FVC)

False Veto Rate: Probability that gamma event is falsely vetoed within the time window.

Averaged False Veto Counts (FVC) = Event Rate x Time Window x PSD Area

FVR is shown to be linearly connected with the coincidence time window.

➢ If the time window is small, FVR is not greatly affected by the PSD area (6.3->9.5).

> Noise of SiPM is to be added in the further update.

- ♦ 1. Principle of LEG Design
- ◆ 2. Basic Analysis Information
- ♦ 3. PSD Uncovered Leakage
- ♦ 4. PSD Covered Leakage
- ◆ 5. Gamma Detection
- 6. Conclusion

6. Conclusion

- 1. A complete evaluation process for LEG has been basically realized.
- 2. A lot of details are to be modified, includes:
 - The bottom equipment box of HERD is to been added in the simulation
 - The fluxes are to be updated to be angular dependent.
 - The contribution to the mis-veto due to the noise of SiPMs is to be added.
 - The contribution to the mis-veto due to recoil of shower from gamma event is to be added. (Not severe below 15GeV)
 - The PSD unit collection efficiency should be tested.
 - Test LEG performance under various PSD layout plan
 - More suggestions on improvements are welcomed.