

高能质子实验终端谱仪探测系统

报告人: 郭宇航 高能质子实验终端研发团队 2023年10月19日

王义

高能质子实验终端介绍
 . 谱仪探测系统与应用
 . 研究进展与测试计划
 . 总结与展望

1.1 高能质子实验站

中国散裂中子源 CSNS

PAGE 3

加速器束流扩展应用组 郭宇航

1.2 高能质子束流的用途

量能器标定 □ 提供800~1600 MeV质子 □ 大型强子对撞机的量能器标定

像素探测器标定

□ 1.6 GeV质子最小电离,穿透性好□ 为位置探测器提供10 µm 位置标定

航空航天等其他研究 □ 1.6 GeV质子能量与宇宙线类似 □ 可用于航天仪器的性能测试

质子照相

₪ 结合束流望远镜等实验设备

□ 为质子照相技术研发提供测试平台

□ 质子基本参数测量

中国散裂中子源 CSNS

PAGE 4

使用多种类探测器对高能质子束提供的1.6 GeV质子进行4D径迹测量

2. 谱仪探测系统与应用

- HPES总计有6套谱仪探测系统:
 - 束流设备:测量质子信息,辅助用户完成实验。
 - 束测设备:测量束流信息,保证用户实验安全进行。
- HPES的探测系统设计原则:以用户需求为本。

设备名称		探测手段	关键参数
束流设备	能量测量系统 (LEMS)	LGAD	能量分辨率 < 1%
	束流望远镜 (Telescope)	硅像素探测器	位置分辨率 < 10 µm
	触发系统 (FLASH)	快塑闪	触发时间精度 1 ns
束测设备	流强测量系统 (BMOS)	SiC	计数率 > 10 ⁵ p/s
	流强刻度系统 (PROUD)	塑闪	动态测量范围 1~10 ⁸ p/s
	束斑测量系统 (PALET)	Micromegas	位置分辨率 < 150 µm

2.1.1 像素探测器标定

- 硅像素探测器,位置精确度3~30 µm。
- 用途:对撞次级粒子径迹测量、医疗、雷达、无损检测。
- 需要大量束流资源,进行探测器位置分辨率标定。
- 1.6 GeV质子束流穿透性能好,十分适合位置探测器标定。

名称	像素阵列	像素大小/μm ²	应用实验	类型
FE-I4	80×160	50×250	ATLAS	Hybrid
Timepix3	256×256	55×55	GET-TPCs	Hybrid
ULTIMATE	928×960	20.7×20.7	RHIC STAR	Monolithic
ALPIDE	512×1024	28×28	ALICE ITS	Monolithic
ATLASPix3	132×372	150×50	ATLAS	Monolithic
Mupix10	250×256	80×80	Mu3e	Monolithic
JadePix3	512×192	16×23	СЕРС	Monolithic
TaichuPix-2	192×64	25×25	СЕРС	Monolithic

2.1.2 東流望远镜

Thanks to 董明义团队!

- 位置探测器的标定需要设备支持: 束流望远镜
 1.采用4~6片像素探测器,实现质子径迹高精度重建
 2.为待测像素探测器提供高精度的位置标定。
- 方案:采用MIMOSA28,搭建一套束流望远镜。
- DUT位置测量精度好于10 µm。

参数	需求
定位精度	< 10 µm
探测器位置精度	< 10 µm
总芯片数	4~6 片

r	硅像素探测器×6
r	塑闪×4
r	数据采集系统
r	机箱与机械台架
r	温度、湿度监控系统
r	冷却系统

2.2.1 量能器标定

- CEPC对撞次级粒子能量重建依赖量能器, ECAL/HCAL。
- BGO/Glass + SiPM,即将进入样机测试阶段。
 - 需大量束流资源做能量标定,目前重度依赖DESY/CERN。
- HPES可将质子降能使用,提供 800~1600 MeV质子。
- 需要HPES协助测量质子能量,精度需求:1%@1.6 GeV

PAGE 9

中国散裂中子源 CSNS

HPES提供能重测重系统(LEMS)。

2.2.2 能量测量系统

 $V = \frac{L}{(T_1 - T_2)}$

- 采用LGAD探测器进行**高精度飞行时间测量** → 质子能量。
- 测量每个质子的能量,能量分辨率好于 1%@ 1.6 GeV。
- 探测器距离40 m,时间分辨率好于70 ps。

参数	需求
能量分辨率	1% @ 1.6 GeV
飞行时间精度	100 ps @ 40 m
探测器 时间分辨率	70 ps

LGAD探测器在 back-n束流测试

• HPES提供能量测量系统(LEMS)。

LGAD-1

L = 40 m

LGAD-2

- 上述实验开展,都需要将探测器间的数据按质子事例对齐。
- 需要为每个质子事例生成一个触发号,并分发给各个系统。
- 各系统将触发号与数据打包后,上传给数据获取系统,用户线下根据触发号完成事例对齐。

2.4 HPES的束测谱仪

Thanks to 易晗、吕游、史欣团队!

• 测量高能质子束斑分布

参数名称	参数值
计数率	10 kHz
灵敏区面积	$10 \times 10 \ cm^2$
位置分辨率	150 μm

- 测量质子绝对流强
 - 调束,确保单粒子束。
 - 直接测量质子束流强度,
 为日常流强测量提供标定。
- 要求: 动态范围大

 $(10^4 \sim 10^9 \text{ p/s or } 0.2 \sim 20000 \text{ MIP})$

- 间接测量质子流强
- 长期、在线流强监测

PAGE 13

2.6 质子照相

利用束流望远镜重建小角度散射质子径迹

> 径迹重建后可观察到两种材料的分界面
 > 位置投影法筛选后,界面分辨率大幅度提升
 高能质子束可应用于质子照相

2.7 粒子物理研究

- ※ pp散射截面测量
- ※ ppX散射截面测量
- ※质子电偶极矩(pEDM)探测
- ※ p → X暗物质寻找实验
- ※寻找质子碰撞宇称不守恒实验

- ▶ 感谢以下老师们提供思路:
 - SJTU李政道研究所 李亮、许金祥
 - 高能物理研究所 阮曼奇、鲍煜等
- ▶ 以上思路还参考了
 - CERN的AWAKE实验
 - 兰州近物所的HPLUS实验
 - FZJ的EDDA实验

高能质子实验终端介绍
 . 谱仪探测系统与应用

3. 研究进展与测试计划

4. 总结与展望

时间	MILESTONE
2022.02 ~ 2023.12	实验终端探测系统设计
2022.12 ~ 2023.03	初步设计报告撰写
2023.12 ~ 2025.12	束线隧道与高能质子实验大厅土建与通用安装
2023.12 ~ 2025.12	实验终端制造、搭建与调试
2026.01 ~ 2026.06	质子束线安装与调试
2026.07 ~ 2027.12	实验终端探测系统在束调试
2028.01 ~ 2028.12	整体试运行并验收

- •目前实验终端各探测系统设计顺利进行中,初步设计报告已完成。
- •预计27年底完成探测系统的在束调试,28年底完成验收。

3.2 HPES的R-dump测试平台 Very Preliminary !! (SNS

- 环散射器是HPES最关键的设备。
- 实际引出效果需要提前通过实验验证。

- 在R-dump前的RTBT管线中拆掉一段真空 管。通过PROUD测量实时流强。
- 环散射器调试成功后,将能根据实际需求, 提供强/弱流质子束流。

3.3 HPES prototype 1.0 测试

4. 总结与展望

- 高能质子实验终端的主要建设目标是为CEPC探测器标定服务。
 - 六套探测系统
 - 数据获取系统
 - 触发逻辑方案
- 此外,高能质子实验终端还可以开展其他工作:
 - 航天实验应用测试
 - 质子照相
 - 粒子物理研究
- - 触发逻辑与接口
 - 数据获取系统测试
- 期待我国第一条1.6GeV高能质子应用束线早日建成!

设备名称		探测手段	关键参数
市	能量测量系统 (LEMS)	LGAD	能量分辨率 < 1%
流设	束流望远镜 (Telescope)	硅像素探测器	位置分辨率 < 10 µm
备	触发系统 (FLASH)	快塑闪	触发时间精度 1 ns
市	流强测量系统 (BMOS)	SiC	计数率 > 10 ⁵ p/s
测设	流强刻度系统 (PROUD)	塑闪	动态测量范围 1~10 ⁸ p/s
备	束斑测量系统 (PALET)	Micromegas	位置分辨率 < 150 µm

承蒙厚爱 感谢倾听 Thanks!

3.2 HPES的R-dump测试平台

中国散裂中子源 CSNS

PAGE 22

3.2.1 改造方案(拟)

3.2.2 环散射器调试

- 通过PROUD测量实时流强,为环散射器的工作状态提供反馈
- 环散射器调试成功后,将能根据实际需求,提供强/弱流质子束流

3.2.3 HPES终端探测器测试

- 将HPES的其他探测设备放在束线上,测试探测设备的功能
- 需要弱流质子束(several p/pulse, ~10⁶ p/s)

硅像素探测器

LGAD探测器

Micromegas

PMT

探测设备	待测探测器	测试项目
束流望远镜	Mimosa28硅像素探测器	 各探测器的software alignment 径迹重建测试 DUT的位置分辨率分析算法测试
能量测量设备	LGAD探测器	LGAD探测器时间分辨率数据分析算法测试
束斑测量设备	Micromegas	 束斑测量位置分辨率测试(结合束流望远镜) 数据分析算法测试
触发设备	快响应塑闪	 探测器响应测试 触发逻辑单元测试
束流强度检测设备	SiC探测器	 探测器响应测试 束流强度分析方法测试