

Heavy Flavor Physics

December 16, 2023

Shanshan Cao Shandong University

Heavy quark physics at different scales

High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

Elastic energy loss ($ab \rightarrow cd$ **)**

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b f_a f_b) \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathscr{M}_{ab \to cd} \right|^2$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $2 \rightarrow 2$ scattering matrices

High p_T parton-medium interaction

Linear Boltzmann Transport (LBT)

Elastic energy loss ($ab \rightarrow cd$)

$$\mathscr{C}_{a}^{\text{el}} = \sum_{b,c,d} \int \prod_{i=b,c,d} \frac{d[p_i]}{2E_a} (\gamma_d f_c f_d - \gamma_b)$$

loss term: scattering rate (for Monte-Carlo simulation)

$$\Gamma_{a}^{\text{el}}(\mathbf{p}_{a}, T) = \sum_{b,c,d} \frac{\gamma_{b}}{2E_{a}} \int \prod_{i=b,c,d} d[p_{i}]f_{b}$$

 $p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$

 $\int f_a f_b \cdot (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left[\mathcal{M}_{ab \to cd} \right]^2$

 $2 \rightarrow 2$ scattering matrices

 $\hat{b} \cdot (2\pi)^4 \delta^{(4)}(p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2$

Inelastic energy loss

• $2 \rightarrow 3$ scattering with a quasi-particle

- Calculate LO diagrams [Kunszt et al., PRD21 (1980)] •
- Gunion-Bertsch Approximation derived at high energy limit [Gossiaux et al., JPG 37 (2010); Fochler et al., PRD 88 (2013)]

$$\left| \overline{\mathcal{M}}_{qQ \to qQg} \right|^{2} = 12g^{2}(1-\bar{x})^{2} \left| \overline{\mathcal{M}}_{0}^{qQ} \right|^{2} \left[\frac{\vec{k}_{\perp}}{k_{\perp}^{2} + x^{2}M^{2}} + \frac{\vec{q}_{\perp} - \vec{k}_{\perp}}{(\vec{q}_{\perp} - \vec{k}_{\perp})^{2} + x^{2}M^{2}} \right]^{2}$$

• Application: Frankfurt (BAMPS) [Uphoff et al., JPG 42 (2015)] Nantes (EPOSHQ) [Gossiaux et al., JPG 37 (2010)] Duke (Lido) [Ke et al, PRC 98 (2018)]

Inelastic energy loss

• Medium information absorbed in $\hat{q} \equiv d \langle p_{\perp}^2 \rangle / dt$

[Majumder PRD 85 (2012); Zhang, Wang and Wang, PRL 93 (2004)]

• Higher-twist formalism: collinear expansion ($\langle k_{\perp}^2 \rangle \ll l_{\perp}^2 \ll Q^2$)

$$\frac{1}{4}\sin^2\left(\frac{t-t_i}{2\tau_f}\right)$$

Flavor hierarchy of jet quenching

Clean perturbative calculation provides a good description of the flavor hierarchy at high p_T [Xing, SC, Qin and Xing, Phys. Lett. B 805 (2020) 135424]

pp baseline within the NLO production + fragmentation framework (NLO: including $g \rightarrow D$)

Gluon fragmentation

- dominates h[±] production up to 50 GeV
- contributes to over 40% D up to 100 GeV

Flavor hierarchy of jet quenching

NLO initial production and fragmentation + Boltzmann transport (elastic and inelastic energy loss) + hydrodynamic medium for QGP

charged hadron

- g-initiated h & D $R_{AA} < q$ -initiated h & D $R_{AA} = \Delta E_g > \Delta E_{q/c}$
- Although R_{AA} (c->D) > R_{AA} (q->h), R_{AA} (g->D) < R_{AA} (g->h) due to different fragmentation functions => R_{AA} (h) $\approx R_{AA}$ (D)

Flavor hierarchy of jet quenching

- starting from $p_T \sim 8 \text{ GeV}$
- confirmation from future precision measurement

• A simultaneous description of charged hadron, D meson, B meson, B-decay D meson R_{AA}'s

Predict R_{AA} separation between B and h / D below 40 GeV, but similar values above – wait for

Low to medium p_T — effects of non-perturbative interaction

Parametrization of the heavy-quark-QGP interaction potential:

$$V(r,T) = -\frac{4}{3}\alpha_s \frac{e^{-t}}{t}$$

Yukawa (color coulomb)

 α_s and σ are the respective Yukawa and confining interaction strength.

> By Fourier transformation,

$$V(\vec{q},T) = -\frac{4\pi\alpha_s C_F}{m_d^2 + |\vec{q}|^2} - \frac{8\pi\sigma}{\left(m_s^2 + |\vec{q}|^2\right)^2}$$

propagator,

$$iM = iM_c + iM_s =$$

in which $m_d = a + b * T$ and $m_s = \sqrt{a_s + b_s} * T$ are the respective screening masses,

\triangleright For $Qq \rightarrow Qq$ process, we express the scattering amplitude with effective potential

Riek and Rapp, Phys. Rev. C 82 (2010) 035201

 $\overline{u}\gamma^{\mu}uV_{c}\overline{u}\gamma^{\nu}u + \overline{u}uV_{s}\overline{u}u$

R_{AA} and v₂ of **D** mesons at LHC

[Xing, Qin, SC, Phys. Lett. B 838 (2023) 137733]

- later evolution stage (near T_c)

Pb-Pb @5.02 TeV

• At high p_T , the Yukawa interaction dominates heavy-quark-medium interaction • At low to intermediate p_{T} , the string interaction dominates, stronger contribution at

R_{AA} and **v**₂ of heavy flavor decayed electrons at RHIC

[Dang, Xing, SC, Qin, arXiv:2307.14808]

 Combining short-range Yukawa and long-range string interactions provide a reasonable description of the current RHIC data of electrons decayed from charm and bottom quarks

Possible inverse hierarchy of c vs. b energy loss

[Dang, Xing, SC, Qin, arXiv:2307.14808]

Enhanced non-perturbative interactions with larger mass

 $\left| \mathcal{M}_{Q+q/g} \right|_{\text{non-pert.}}^2 \sim \frac{t^2 - 4m_Q^2 t}{(t - m_z^2)^4}$

Possible inverse hierarchy of c vs. b energy loss

Enhanced non-perturbative interactions with larger mass

- At low T, heavier quarks may lose more energy at high p_{T}
- Need more precise data at high p_{T} to test this model prediction

[Dang, Xing, SC, Qin, arXiv:2307.14808]

$$\mathcal{M}_{Q+q/g}\Big|_{\text{non-pert.}}^2 \sim \frac{t^2 - 4m_Q^2 t}{(t - m_s^2)^4}$$

Depend on competition between the dead cone effect and non-perturbative scattering

Medium to low p_T hadrons — hadronization

Fragmentation:

High momentum heavy quarks are more likely to fragment into hadrons [Peterson, FONLL, NLO, Pythia, etc.]

Coalescence (recombination):

Low momentum heavy quarks are more likely to combine with thermal partons into hadrons

Coalescence models

- Simplified models: equal-velocity coalescence [Shao et. al., e.g. EPJC 78 (2018) 344] coalescence between neighboring particles [AMPT, e.g. PRC 101 (2020) 034905]
- Resonance recombination: coalescence probability ~ resonant scattering rate [TAMU, e.g. PRL 124 (2020) 042301] $P_{\text{coal}}(p) = \Delta \tau_{\text{res}} \Gamma_O^{\text{res}}(p)$ $\Delta \tau_{\rm res}$: the time window for resonant state
- Instantaneous coalescence: coalescence probability ~ wavefunction overlap Probability: Wigner function $f_M^W \equiv |\langle M | q_1, q_2 \rangle|^2$ (for meson)
 - Encodes information of microscopic hadron structures
 - Wide application: Duke, LBL, Catania, Nantes, PHSD, Ko, Li, Zhuang, etc.
- A recent comparison between different models: arXiv:2311.10621.

Charmed hadron spectra: QGP flow effect

[SC, Sun, Li, Liu, Xing, Qin, Ko, Phys. Lett. B 807 (2020) 135561]

- Coalescence dominates Λ_c production over a wider p_{T} region than D^0 The QGP radial flow significantly enhances the coalescence contribution

Charmed hadron chemistry at RHIC

- Stronger QGP flow boost on heavier hadrons => increasing Λ_c/D^0 with N_{part}
- Coalescence significantly increases Λ_c/D^0 , larger value in more central collisions (stronger QGP flow)

effects of coalescence

• Enhanced D_s/D^0 due to strangeness enhancement in QGP and larger D_s mass than D^0

[SC, Sun, Li, Liu, Xing, Qin, Ko, Phys. Lett. B 807 (2020) 135561]

RHIC vs. LHC

[SC, Sun, Li, Liu, Xing, Qin, Ko, Phys. Lett. B 807 (2020) 135561]

- IF charm quarks have the same initial spectrum at RHIC and LHC, Λ_c/D^0 would be larger at LHC than RHIC due to the flow effect
- The harder initial charm quark spectra at LHC reduces Λ_c/D^0
- Similar theoretical prediction on $D_{\rm s}/D^0$

Probing the EoS of QGP

Usual conduct: fix QGP properties using soft hadron observables and study nuclear modification on hard particles

Inverse question: can we probe QGP properties using hard particle observables?

QGP

Hard probes through QGP

F.-L. Liu, X.-Y. Wu, SC, G-Y. Qin, X.-N. Wang, Phys. Lett. B 848 (2024) 138355

Connection between transport and EoS

Transport

$$p_a \cdot \partial f_a(x_a, p_a) = E_a(\mathscr{C}_a^{\text{el}} + \mathscr{C}_a^{\text{inel}})$$

Strong coupling strength g(E,T)

Equation of state

 $P_{qp}(m_u, m_d, \dots, T) = \sum_{i=u,d,s,g} d_i \int \frac{d^3p}{(2\pi)^3} \frac{\left|\vec{p}\right|^2}{3E_i(p)} f_i(p) - B(T)$ $= \Sigma_i P_{kin}^i(m_i, T) - B(T)$ $\epsilon = TdP(T)/dT - P(T), \quad s = (\epsilon + P)/T$

Thermal mass of partons

$$\begin{split} m_g^2 &= \frac{1}{6} g^2 \left[(N_c + \frac{1}{2} n_f) T^2 + \frac{N_c}{2\pi^2} \Sigma_q \mu_q^2 \right] \\ m_{u,d}^2 &= \frac{N_c^2 - 1}{8N_c} g^2 \left[T^2 + \frac{\mu_{u,d}^2}{\pi^2} \right] \\ m_s^2 - m_{0s}^2 &= \frac{N_c^2 - 1}{8N_c} g^2 \left[T^2 + \frac{\mu_s^2}{\pi^2} \right] \end{split}$$

Strategy: Fit g from comparing transport model to data Calculate EoS from g

Parametrization and Bayesian analysis

Strong coupling strength

Interaction between thermal partons (therr

Interaction with hard partons (parton energy

Bayes Theorem

 $P(\boldsymbol{\theta}|\text{data}) \propto P(\text{data}|\boldsymbol{\theta})P(\boldsymbol{\theta})$

posterior distribution

mal scale):
$$g^{2}(T) = \frac{48\pi^{2}}{(11N_{c} - 2N_{f})\ln\left[\frac{(aT/T_{c} + b)^{2}}{1 + ce^{-d(T/T_{c})^{2}}}\right]}$$

gy scale):
$$g^2(E) = \frac{48\pi^2}{(11N_c - 2N_f)\ln\left[(AE/T_c + B)^2\right]}$$

Parameters: $\theta = (a, b, c, d, A, B)$

model-to-data comparison

$$P(\text{data}|\boldsymbol{\theta}) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{[y_i(\boldsymbol{\theta}) - y_i^{\text{exp}}]^2}{2\sigma_i^2}}$$

prior distribution

Model calibration and parameter extraction

Calibration against observables

(Two examples from many observables)

Extraction of model parameters

EoS of QGP and diffusion coefficient of heavy quarks

Equation of state

- Agreement with the lattice data

Diffusion coefficient

Simultaneous constraint on QGP properties and transport properties of hard probes

Probing medium geometry and E&M field with the D meson v₁

[Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

Probing medium geometry and E&M field with the D meson v₁

[Jiang, SC, Xing, Wu, Yang, Zhang, Phys. Rev. C 105 (2022) 5, 054907]

- Strong E&M field dominates at the LHC energy

 Tilted geometry w.r.t. the beam direction dominates at the RHIC energy • Sensitivity of the D meson v_1 to different E&M evolution profiles at the LHC

Probing system size dependence of jet quenching

Small system (p-Pb) puzzle

- Large D meson
 v₂ up to 8 GeV
- Almost no suppression
- Should not be QGP effects
- Could it be initial state effects?

Probing system size dependence of jet quenching

Small system (p-Pb) puzzle

- Large D meson
 v₂ up to 8 GeV
- Almost no suppression
- Should not be QGP effects
- Could it be initial state effects?

[Zhang, Marquet, Qin, Wei and Xiao, PRL 122 (2019)]

- Initial state interactions (CGC) successfully explain the large v₂ of both open charmed meson and charmonium in p-Pb collisions.
- How to separate initial state and QGP effect

 a system size scan of jet quenching to
 bridge large and small systems

Charged hadron and D meson R_{AA} in different systems

charged hadron

- Clear hierarchy of hadron R_{AA} with respect to the system size
- Significant hadron R_{AA} in the small O-O system, existence of QGP

Liu, Xing, Wu, Qin, SC, Xing, Phys. Rev. C 105 (2022) 044904

Scaling of RAA with respect to Npart

charged hadron

- Scaling of the hadron R_{AA} with the system size (quantified by N_{part}) across different collision systems

D meson

Liu, Xing, Wu, Qin, SC, Xing, Phys. Rev. C 105 (2022) 044904

• $R_{pA} \sim 1$ in proton-nucleus collisions is mainly due to the small size of the medium

D meson v₂ in different systems

Li, Xing, Wu, SC, Qin, EPJC 81 (2021) 11, 1035

• Energy loss effect: for a given centrality, v_2 increases with the system size • Geometry effect: for a given N_{part}, v₂ increases from O-O, Ar-Ar, Xe-Xe to Pb-Pb

Scaling of v_2/ε_2 with respect to N_{part}

- v_2/ε_2 scales with the system size across different collision systems
- overwhelms QGP effect

Li, Xing, Wu, SC, Qin, EPJC 81 (2021) 11, 1035

• Separate energy loss and geometry effects by rescaling heavy quark v_2 with bulk ε_2 • Search for the breaking of the scaling with future experiments — initial state effect

Summary

- pQCD provides a good description of flavor hierarchy of jet quenching at high p_{T}
- Color potential interaction improves model calculation at low to medium p_{T}
- Coalescence + fragmentation hadronization is crucial for understanding the hadron chemistry at low to medium p_{T}
- Heavy flavor observables can be used to constrain the EoS of QGP
- Heavy quark v₁ probes medium deformation at RHIC, while E&M field at LHC
- System size scan of HQ observables bridges large and small collision systems

Heavy-quark-QGP interaction at different p_T and in different collision systems