

Hao-Lei Chen Collaborator: Zhi-bin Zhu, Xu-Guang Huang PhysRevD.108.054006

2023年12月17 @QPT2023

OUTLINE

- Introduction
- fRG + QM + rotation
- Toward QCD under rotation
- Summary

Spin polarization/alignment

X (defines Ψ_{R})

~10²¹/s at RHIC

eB, Ω

Anomalous transport

CVE, Vilenkin (1979) $J = \left(\frac{\mu^2}{4\pi^2} + \frac{T^2}{12}\right)\omega$

magneto-vortical transport, Hattori-Yin (2016)

$$J^0 = \frac{eB\omega}{4\pi^2}$$

FIRST STUDIED BY NJL MODEL

Analogy with chemical potential

HLC, et al, Phys. Rev. D 93, 104052 (2016)

CURRENT STAGE

- Model studies (P)NJL, QM, Bag model, Holographic...
- Rotation + other backgrounds (magnetic field, chemical potential, etc)
- Lattice

V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, Phys. Rev. D 103, 094515 (2021) J.-C. Yang and X.-G. Huang, arXiv:2307.05755 [hep-lat].

- Rotational effect on quark has been widely studied
- We don't know much about how rotation affects gluon sector

S. Chen, K. Fukushima, and Y. Shimada, Phys. Rev. Lett. 129, 242002 (2022) M. N. Chernodub, Phys. Rev. D 103, 054027 (2021), Phys. Rev. D 107, 114502 (2023) Y-Q Zhao, S He, D Hou, L Li, and Z Li, JHEP04(2023)115 Y. Jiang, 2312.06166

DISCREPANCY

REAL & IMAGINARY ROTATION

Real Rotation

- Boundary condition to preserve causality
- Inhomogeneity
- Sign problem
- Subtlety of a Euclidean field theory

Imaginary Rotation

- Boundary condition for space is not necessary
- No sign problem
- Well defined Euclidean field theory
- twisted boundary condition

 $(\tau, \theta, r, z) \sim (\tau + \beta, \theta - \tilde{\Omega}_{\mathrm{I}}, r, z),$

FUNCTIONAL RENORMALIZATION GROUP

Functional integral with an IR regulator

$$Z_k[J] = \int D\chi e^{-S[\chi] + \int_{\chi} \chi(\chi) J(\chi) - \Delta S_k[\chi]}$$

regulator

$$\Delta S_k[\chi] = \frac{1}{2} \int \frac{d^d q}{(2\pi)^d} \chi^*(q) R_k(q) \chi(q)$$

Legendre transformation:

$$\Gamma_k[\phi] = -W_k[J] + \int_x \phi(x)J(x) + \Delta S_k[\phi]$$

flow equation

$$\partial_k \hat{\Gamma}_k[\Phi, \bar{\psi}, \psi] = \frac{1}{2} \mathrm{STr} \left[\left(\hat{\Gamma}_k^{(2)}[\Phi, \bar{\psi}, \psi] + \hat{R}_k \right)^{-1} \partial_k \hat{R}_k \right]$$

C. Wetterich, PLB, 301 (1993) 90

Lagrangian

$$\mathcal{L} = \phi [-(-\partial_{\tau} + \Omega \hat{L}_z)^2 - \nabla^2] \phi + U(\phi) + \bar{q} [\gamma^0 (\partial_{\tau} - \Omega \hat{J}_z) - i\gamma^i \partial_i + g(\sigma + i\vec{\pi} \cdot \vec{\tau}\gamma^5)] \phi U(\phi) = \frac{m^2}{2} \phi^2 + \frac{\lambda}{4} \phi^4 - c\sigma$$

LPA

 $\mu_B [\text{MeV}]$

Y. Chen, et al., Phys. Rev. D 104, 054009 (2021),

= 28 MeV

=135 MeV

700 800

900

arXiv:2101.08484 [hep-ph].

KG equation and Dirac equation can be easily solved

$$\phi = \frac{1}{N_{l,i}^2} e^{-i(\varepsilon - \Omega l)t + il\theta + ip_z z} J_l(p_{l,i}r), \qquad u_+ = \frac{e^{-i(\varepsilon - \Omega j) + ip_z z}}{\sqrt{\varepsilon + m}} \begin{pmatrix} (\varepsilon + m)\phi_l \\ 0 \\ p_z \phi_l \\ i\tilde{p}_{l,i}\varphi_l \end{pmatrix}, \qquad u_- = \frac{e^{-i(\varepsilon - \Omega j) + ip_z z}}{\sqrt{\varepsilon + m}} \begin{pmatrix} 0 \\ (\varepsilon + m)\phi_l \\ -i\tilde{p}_{l,i}\varphi_l \\ -p_z \phi_l \end{pmatrix},$$

Local potential approximation(LPA): the RG-scale dependence only enters the effective potential

BOUNDARY CONDITION IS IMPORTANT!

- To preserve causality $\Omega R \leq 1$
- For meson: $\phi(r = R) = 0$

1Without BC, when $\varepsilon - \Omega l < 0$ $e^{\beta(\varepsilon - \Omega l)} - 1$ Bose-Einstein condensate?

The same for gluon. But does not hold if we add a magnetic field

With BC, we are safe, since $p_{l,i} \pm \Omega l > 0$ with $\Omega R \leq 1$

- For quark: $\int_0^{2\pi} \mathrm{d}\theta \bar{\psi} \gamma^r \psi|_{r=R} = 0;$
- No rotational effect in vacuum (perturbatively)

FLOW EQUATION

• Regulator
$$R_{\phi,k} = (k^2 - p^2)\theta(k^2 - p^2),$$
 for meson
 $\hat{R}_{q,k} = -i\gamma^i\partial_i\left(\frac{k}{\sqrt{-\nabla^2}} - 1\right)\theta(k^2 + \nabla^2).$ for quark

Then with straightforward calculation, flow equation reads

$$\partial_{k}U_{k}(r) = \frac{1}{(2\pi)^{2}} \Big\{ \sum_{l,i} \frac{1}{N_{l,i}^{2}} \operatorname{tr} \frac{k\sqrt{k^{2} - p_{l,i}^{2}}}{\varepsilon_{\phi}} \frac{1}{2} [\operatorname{coth} \frac{\beta(\varepsilon_{\phi} + \Omega l)}{2} + \operatorname{coth} \frac{\beta(\varepsilon_{\phi} - \Omega l)}{2}] J_{l}(p_{l,i}r)^{2} \theta(k^{2} - p_{l,i}^{2}) \\ - \sum_{l,i} \frac{1}{\tilde{N}_{l,i}^{2}} 2N_{c}N_{f} \frac{k\sqrt{k^{2} - \tilde{p}_{l,i}^{2}}}{\varepsilon_{q}} \frac{1}{2} [\operatorname{tanh} \frac{\beta(\varepsilon_{q} + \Omega j)}{2} + \operatorname{tanh} \frac{\beta(\varepsilon_{q} - \Omega j)}{2}] [J_{l}(\tilde{p}_{l,i}r)^{2} + J_{l+1}(\tilde{p}_{l,i}r)^{2}] \theta(k^{2} - \tilde{p}_{l,i}^{2}) \Big\}, \qquad \begin{bmatrix} p_{l,i} \to p_{t} \\ \sum_{i} \frac{1}{N_{l,i}^{2}} \to p_{t} dp_{t} \\ \sum_{i} \frac{1}{N_{l,i}^{2}} \to p_{t} dp_{t} \\ \sum_{i} J_{l}(x)^{2} = 1 \end{bmatrix} \Big\}$$

$$p_{l,i} \rightarrow p_t$$

$$\sum_i \frac{1}{N_{l,i}^2} \rightarrow p_t dp_t$$

$$\sum_{l=-\infty}^{\infty} J_l(x)^2 = 1$$

 Numerical calculation: grid method, discretizing the effective potential in field space and numerically evolve all these grid with flow equation

NUMERICAL RESULTS

Still contradict with lattice results

FIG. 5. The quark mass as a function of the radius *r* at different Ω at T = 160 MeV.

FIG. 1. The quark mass m_q as a function of Ω and T at r = 0.9R in the QM model.

NUMERICAL RESULTS

Due to causality, we can not reach here

FIG. 2. The pesudocritical temperature T_c as a function of Ω at r = 0.9R from fRG and MFA in the QM model.

FIG. 3. Meson masses and quark mass as functions of Ω at T = 120 MeV from QM model.

IMAGINARY ROTATION

Analytical continuation seems OK

FIG. 9. The quark mass as a function of the imaginary rotating angular velocity at T = 160 MeV from fRG.

FIG. 10. The quark mass as a function of the square of the rotating angular velocity at T = 160 MeV and r = 0.9R from fRG calculation.

TOWARD QCD UNDER ROTATION

• With the help of vierbein

 $A_{\hat{\mu}} = e_{\hat{\mu}}^{\ \mu} A_{\mu}$

Simple replacement in Lagrangian

- At one loop level, the Lagrangian can be diagonalized
- One can further add some background fields

AO CONDENSATE

S. Chen, K. Fukushima, and Y. Shimada Phys.Rev.Lett. 129 (2022) 24, 242002

Weiss potential

$$V(\boldsymbol{\phi}; \tilde{\Omega}_{\mathrm{I}})|_{\tilde{r}=0} = \frac{\pi^2 T^4}{3} \sum_{\boldsymbol{\alpha}} \sum_{s=\pm 1} B_4 \left(\left(\frac{\boldsymbol{\phi} \cdot \boldsymbol{\alpha} + s \tilde{\Omega}_{\mathrm{I}}}{2\pi} \right)_{\mathrm{mod } 1} \right)$$

Simple replacement

 $\phi \cdot \alpha \to \phi \cdot \alpha \pm \beta \Omega_I$

 Still true at higher loop? Rotation contribution to 3-gluon interaction and gluon-ghost vertex differently

FIG. 4. Conjectured phase diagram on the $\tilde{\Omega}_{\rm I}$ -T plane around the rotation axis, $\tilde{r} = 0$, for the SU(3) case. Solid curves represent the phase transition.

CHROMO-MAGNETIC CONDENSATE

$\Omega=0, T=0$: Savvidy Vacuum

G.K. Savvidy, Phys. Lett. B, 71:133, 1977

SU(2) Effective potential

- No replacement $\phi \cdot \alpha \rightarrow \phi \cdot \alpha \pm \beta \Omega_I$
- Stable at 2-loop level

M. Bordag, V. Skalozub, Eur. Phys. J.C 82 (2022) 5, 390

PERTURBATIVE CALCULATION

Too many Bessel functions

 $\int r \mathrm{d}r J_{l_1}(p_{1t}r) J_{l_2}(p_{2t}r) J_{l_3}(p_{3t}r) J_{l_4}(p_{4t}r) \delta(l_1 + l_2 + l_3 + l_4)$

Small rotation expansion

Fermion: $\ln Z_2 = 2 \int \mathrm{d}^3 x \int \, \mathrm{d}^3 p \frac{\mathrm{e}^{\beta \varepsilon}}{(1 + \mathrm{e}^{\beta \varepsilon})^2} \beta^2 \Omega^2 (\frac{1}{2}r^2 p_\perp^2 + \frac{1}{4}) \qquad \mathbf{YM} : \ln Z_2 = 2N_g \int \mathrm{d}^3 x \int \, \mathrm{d}^3 p \frac{\mathrm{e}^{\beta \varepsilon}}{(1 - \mathrm{e}^{\beta \varepsilon})^2} \beta^2 \Omega^2 (\frac{1}{2}r^2 p_\perp^2 + 1)$

• r=0 or spin contribution only A. Ayala et al., Phys. Rev. D 103, no.7, 076021 (2021), [erratum: Phys. Rev. D 104, no.3, 039901 (2021)],

 $S(p) = \frac{(p_0 + \Omega/2 - p_z + ip_\perp)(\gamma_0 + \gamma_3) + m(1 + \gamma_5)}{(p_0 + \Omega/2)^2 - \bar{p}^2 - m^2 + i\varepsilon} \mathcal{O}^+ + \frac{(p_0 - \Omega/2 + p_z - ip_\perp)(\gamma_0 - \gamma_3) + m(1 + \gamma_5)}{(p_o - \Omega/2)^2 - \bar{p}^2 - m^2 + i\varepsilon} \mathcal{O}^-.$

SUMMARY & OUTLOOK

- Our fRG study of QM model under rotation agree with previous model studies
- More careful study of gluon under rotation is needed
- QM model beyond LPA
- Chromo-magnetic induced by rotation?
- Some non-perturbative aspects? Rotating QCD vacuum?

THANKS

BACKUP

CEP

FIG. 6. $T - \mu$ phase diagram near the critical end point at different angular velocity.

MFA

FIG. 7. The quark mass m_q as a function of Ω and T at r = 0.9R under MFA of QM model.

FIG. 8. Meson masses and quark mass vs Ω at T = 120 MeV and r = 0.9R under MFA of QM model.

2+1D NJL

$$m(m-m_0) - \sum_{n \neq 0} (-1)^n \frac{m \mathrm{e}^{-m\sqrt{(n\beta)^2 + 2r^2[1 - \cos(n\beta\Omega_I)]}}}{\sqrt{(n\beta)^2 + 2r^2[1 - \cos(n\beta\Omega_I)]}} \cos\left(n\beta\frac{\Omega_I}{2}\right) = m(m-m_0) - \mathrm{tr}(S_\beta - S_0) = 0,$$

FIG. 12. The quark mass as a function of the square of rotating angular velocity at T = 160 MeV and r = 0 with 2D NJL model.