

Coupling strength induced BCS-BEC crossover on phase boundary of pion superfluid

刘志洋 毛施君 西安交通大学

arXiv:2310.02685

• Order parameters

Goldstone mode

• Equation of state

• Sarma & LOFF

• Order parameters

• Goldstone mode

• Equation of state

Sarma & LOFF

scattering length: sign reversal

• The increasing isospin (baryon) density leads to a phase transition from normal quark matter to a pion superfluid (color superconductor).

M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B422, 247 (1998).R. Rapp, T. Schaefer, E. V. Shuryak, and M. Veldovsky, Phys. Rev. Lett. 81, 53 (1998).D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592 (2001); Phys. At. Nucl. 64, 834 (2001).

The BCS-BEC crossover happens with the change of isospin (baryon) density.

M. Buballa, Phys. Rep. 407, 205 (2005).L. Y. He, S. J. Mao and P. F. Zhuang, Inter. J. Mod. Phys. A 28, 1330054 (2013).H Tajima, H Liang, Phys. Rev. A 106, 043308 (2022).

• Order parameters

• Goldstone mode

• Equation of state

Sarma & LOFF

2-flavor Nambu-Jona-Lasinio model

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m_0 + \gamma^0 \hat{\mu} \right) \psi + G \left[(\bar{\psi} \psi)^2 + \left(\bar{\psi} i \gamma_5 \vec{\tau} \psi \right)^2 \right]$$

The thermodynamic potential in the mean field approximation

$$egin{aligned} \Omega(\Delta,m) &= rac{1}{4G} \Big[(m-m_0)^2 + \Delta^2 \Big] - rac{T}{V} ext{Tr} \ln \mathcal{S}_{ ext{mf}}^{-1}, \ &= rac{(m-m_0)^2 + \Delta^2}{4G} - 2T N_c \int rac{d^3 \mathbf{k}}{(2\pi)^3} \Big[\ln \Big(1 + e^{-E_k^-/T} \Big) \ &+ \ln \Big(1 + e^{E_k^-/T} \Big) + \ln \Big(1 + e^{-E_k^+/T} \Big) + \ln \Big(1 + e^{E_k^+/T} \Big) \Big]. \end{aligned}$$

Order parameters:

$$m = m_0 - 2G\langle \bar{\psi}\psi \rangle$$
$$\Delta = -2G\langle \bar{\psi}i\gamma_5\tau_1\psi \rangle$$

Pauli-Villars scheme

Range of application: Uniform and non-uniform superfluid

Pauli-Villars scheme

Normalize thermodynamic potential:

$$\begin{split} \Omega_{reg} &= G(\sigma^2 + \pi^2) - 2N_c \sum_{j=0}^N \sum_{i=1}^4 \int \frac{d^3 \mathbf{p}}{(2\pi)^3} c_j g(\omega_{ij}(\mathbf{p}, \mathbf{q})) \\ \omega_{1j}(\mathbf{p}, \mathbf{q}) &= E_{+j} + \epsilon_{-j} + \frac{\mu_B}{3}, \ \omega_{2j}(\mathbf{p}, \mathbf{q}) = E_{+j} - \epsilon_{-j} - \frac{\mu_B}{3} \\ \omega_{3j}(\mathbf{p}, \mathbf{q}) &= E_{-j} - \epsilon_{-j} + \frac{\mu_B}{3}, \ \omega_{4j}(\mathbf{p}, \mathbf{q}) = E_{-j} + \epsilon_{-j} - \frac{\mu_B}{3} \\ \epsilon_{\pm j} &= \frac{1}{2} \Big(\sqrt{|\mathbf{p} + \mathbf{q}|^2 + M_j^2} \pm \sqrt{|\mathbf{p} - \mathbf{q}|^2 + M_j^2} \Big) \\ M_j^2 &= m^2 + a_j \Lambda^2, \ E_{\pm j} = \sqrt{(\epsilon_{+j} \pm \mu_I/2)^2 + \Delta^2} \end{split}$$

Normalize parameters:

$$a_0 = 0, \ c_0 = 1, \sum_{i=0}^N c_i = 0, \sum_{i=0}^N c_i (m^2 + a_i \Lambda^2) = 0, \dots \sum_{i=0}^N c_i (m^2 + a_i \Lambda^2)^{(N-1)} = 0$$

Condensates

At low isospin chemical potential region $\Delta = 0$ When $m > \mu_I/2$ $\frac{m_0 - m}{2G} + 4N_c \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{m}{E_F} = 0$ 400 When $m < \mu_I/2$ $\int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{m}{E_k} \left(\frac{E_k - \mu_I/2}{E_k^-} + \frac{E_k + \mu_I/2}{E_k^+} \right) = \frac{m - m_0}{4GN_c}$

400

Condensates

The pion condensate begins to appear

$$1 - 4N_c G \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left(\frac{1}{E_k^-} + \frac{1}{E_k^+}\right) = 0$$

Strong coupling strength Weak coupling strength Gap eq 2: Gap eq 2: $1 - 8N_cG \int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{E_k}{E_k^2 - (\mu_I^c)^2/4} = 0 \qquad 1 - 8N_cG \int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{\mu_I/2}{(\mu_I)^2/4 - E_k^2} \quad E_k < \mu_I/2$ polarization function: $-8N_cG\int \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{E_k}{E_c^2 - (\mu_I)^2/4} = 0 \ E_k > \mu_I/2$ $1 - 8N_c G \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{E_k}{E_k^2 - (M_\pi)^2 / 4} = 0$ Critical isospin chemical potential Critical isospin chemical potential

 $\mu_I^c = M_{\pi}$

 $\mu_I^C < M_{\pi}$

BCS-BEC crossover

effective chemical potential

$$\frac{\mu_{\text{eff}}}{2} = \frac{\mu_I}{2} - m$$

BCS-BEC crossover

$$\mu_{eff} > 0 \longrightarrow \mu_{eff} < 0$$

effective chemical potential on phase boundary

 $\mu_{eff}^{c}=0$

At
$$G_0 = 2.89 \text{ GeV}^{-2}$$

• Order parameters

Goldstone mode

• Equation of state

Sarma & LOFF

Mesons

S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
J. Hufner, S. P. Klevansky, P. Zhuang, and H. Voss, Ann. Phys. (N.Y.) 234, 225 (1994).
P. Zhuang, J. Hufner, and S. P. Klevansky, Nucl. Phys. A576, 525 (1994).

RPA resummation (quantum fluctuation)

$$\rightarrow = = = \langle \simeq \times + \rangle \land + \rangle \land (+ \cdots = \frac{\times}{1 - \sqrt{2}})$$

Meson polarization functions

$$\Pi_{MM'}(p) = i \int \frac{d^4k}{(2\pi)^4} \operatorname{Tr} \left[\Gamma_M^* \mathcal{S}_{\mathrm{mf}}(p+k) \Gamma_{M'} \mathcal{S}_{\mathrm{mf}}(k) \right] \\ \Pi_{\pi_+\pi_+}(p_0) = 2N_c \int \frac{d^3\mathbf{k}}{(2\pi)^3} \left(\frac{1}{E_k + \frac{p_0 + \mu_I}{2}} + \frac{Sign\left(E_k - \frac{\mu_I}{2}\right)}{E_k - \frac{p_0 + \mu_I}{2}} \right) \\ \Gamma_M = \begin{cases} 1 & M = \sigma \\ i\tau_+\gamma_5 & M = \pi_+ \\ i\tau_-\gamma_5 & M = \pi_- \\ i\tau_3\gamma_5 & M = \pi_0 \end{cases}, \quad \Gamma_M^* = \begin{cases} 1 & M = \sigma \\ i\tau_-\gamma_5 & M = \pi_+ \\ i\tau_+\gamma_5 & M = \pi_- \\ i\tau_3\gamma_5 & M = \pi_0 \end{cases}$$

The meson mass is determined through its own pole equation

$$1 - 2G\Pi_{MM}(p_0 = M_M, \mathbf{p} = \mathbf{0}) = 0$$

Goldstone mode

When $m > \mu_I/2$ Strong coupling

$$1 - 8N_c G \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{E_k}{E_k^2 - (p_0 + \mu_I)^2 / 4} = 0$$
$$\frac{M_{\pi_+}}{M_{\pi}} = 1 - \frac{\mu_I}{M_{\pi}}$$

When $m < \mu_I/2$ Weak coupling

$$egin{aligned} 1 - 8 N_c G \int_A rac{d^3 \mathbf{k}}{(2\pi)^3} rac{E_k}{E_k^2 - (p_0 + \mu_I)^2/4} &= 0 \ A &= \sqrt{ig(rac{\mu_I}{2} ig)^2 - m^2} \end{aligned}$$

$$\Pi_{\pi_{+}\pi_{+}}(p_{0}) = 2N_{c} \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \left(\frac{1}{E_{k} + \frac{p_{0} + \mu_{I}}{2}} + \frac{Sign\left(E_{k} - \frac{\mu_{I}}{2}\right)}{E_{k} - \frac{p_{0} + \mu_{I}}{2}} \right)$$

Order parameters

• Goldstone mode

• Equation of state

• Sarma & LOFF

Equation of state

$$P = -\Omega, \quad s = -\frac{\partial\Omega}{\partial T}, \quad n_I = -\frac{\partial\Omega}{\partial\mu_I},$$

$$\epsilon = -P + Ts + \mu_I n_I.$$

Sound velocity

$$c_s^2 = \frac{\partial P}{\partial \epsilon}$$

degree of softness or hardness

Order parameters

• Goldstone mode

• Equation of state

• Sarma & LOFF

$$Min(E_k^- = \sqrt{\left(E_k - \mu_I/2
ight)^2 + \Delta^2}) < \mu_B/3$$

When $m < \mu_I/2$

$$Min(E_k^-=\sqrt{\left(E_k-\mu_I/2
ight)^2+\Delta^2
ight)}=\Delta$$

Sarma & LOFF

Order parameters

• Goldstone mode

• Equation of state

Sarma & LOFF

• Summary

	Strong Coupling	Weak Coupling
Pion superfluid	BEC , Fast	BCS, Slow
Critical point	$\mu_I^c = M_\pi$	$\mu_I^c \neq M_\pi$
Goldstone mode	Continuous zero	Jump to zero
Equation of state	c_s^2 monotonous and high	c_s^2 Non-monotonic and low
Sarma	High μ_B	Low μ_B

