Rapidity scan approach for net-baryon cumulants with a statistical thermal model

Jianing Li (IMP), Lipei Du (McGill) and Shuzhe Shi (Tsinghua)

The 15th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT 2023), 17 Dec. 2023, Zhuhai, Guangdong

arXiv: 2311.11374 [nucl-th]

• Introduction

- Net-baryon cumulants of inhomogeneous system in rapidity scan
- Extraction of thermodynamic variables on QCD phase diagram
- Summary and Outlook

Spacetime evolution

Space-time Evolution of a Heavy Ion Collision

Shusu Shi, *Event anisotropy* v_2 *at STAR*, PhD Thesis.

QCD phase diagram & critical endpoint (CEP)

Beam energy scan & QCD phase diagram

C. Shen, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Critical point: large ξ & fluctuations

Enhancement

Non-monotonicity

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 M. A. Stephanov, Phys. Rev. Lett. 107, 052301

QCD phase diagram & critical endpoint (CEP)

STAR Collaboration, Phys. Rev. Lett. 130, 082301

Beam energy scan & QCD phase diagram

C. Shen, in 28th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Critical point: large ξ & fluctuations

Enhancement

Non-monotonicity

M. A. Stephanov, *Phys. Rev. Lett.* 102, 032301 M. A. Stephanov, Phys. Rev. Lett. 107, 052301

Rapidity scan

H. Matthew, Particle Production in Au+Au Collisions at Beam Energy Scan II Energies at RHIC, QM2023

Chemical freeze-out fit by THERMUS at 27 GeV

Rapidity scan can study QCD phase diagram in detail.

Rapidity scan

Rapidity scan based on 3D Ising model

J. Brewer, S. Mukherjee, K. Rajagopal, and Y. Yin, *Phys. Rev. C* 98, 061901(R)

arXiv: 2302.13852 [nucl-th]

Particles radiated from an inhomogeneous fireball

arXiv: 2302.13852 [nucl-th]

Inhomogeneous fireballs are extracted.

Framework of rapidity scan based on continuous-source model

P. Braun-Munzinger, B. Friman, K. Redlich, A. Rustamov and J. Stachel, Nucl. Phys. A 1008, 122141

 B_A = Number of \bullet – \circ in acceptance

Framework of rapidity scan based on continuous-source model

the net baryon number fluctuates due to the finite acceptance."

Cumulant generating function in finite acceptance range

Cumulant generating function

$$g_B(t) = \frac{B}{2} \ln \left[\frac{q_1(t)}{q_2(t)} \right] + \ln \left\{ I_B \left[2\sqrt{\mathcal{Z}\bar{\mathcal{Z}}} \sqrt{q_1(t) q_2(t)} \right] \right\}$$

JL, L. Du and S. Shi, 2311.11374 [nucl-th]

$$q_{1}(t) = 1 + \alpha_{B} + \alpha_{B}e^{t}$$
$$q_{2}(t) = 1 + \alpha_{\bar{B}} + \alpha_{\bar{B}}e^{-t}$$
$$\mathscr{Z} = \langle N_{B} \rangle$$
$$\bar{\mathscr{Z}} = \langle N_{\bar{B}} \rangle$$

The 1st to 6th cumulants

$$\kappa_{1}^{B} = \langle B_{A} \rangle$$

$$\kappa_{2}^{B} = \left\langle \left(\delta B_{A} \right)^{2} \right\rangle$$

$$\kappa_{3}^{B} = \left\langle \left(\delta B_{A} \right)^{3} \right\rangle$$

$$\kappa_{4}^{B} = \left\langle \left(\delta B_{A} \right)^{4} \right\rangle - 3 \left\langle \left(\delta B_{A} \right)^{2} \right\rangle^{2}$$

$$\kappa_{5}^{B} = \left\langle \left(\delta B_{A} \right)^{5} \right\rangle - 10 \left\langle \left(\delta B_{A} \right)^{3} \right\rangle \left\langle \left(\delta B_{A} \right)^{2} \right\rangle$$

$$\kappa_{6}^{B} = \left\langle \left(\delta B_{A} \right)^{6} \right\rangle - 15 \left\langle \left(\delta B_{A} \right)^{4} \right\rangle \left\langle \left(\delta B_{A} \right)^{2} \right\rangle$$

$$-10 \left\langle \left(\delta B_{A} \right)^{3} \right\rangle^{2} + 30 \left\langle \left(\delta B_{A} \right)^{2} \right\rangle^{3}$$

$$\delta B_{A} = B_{A} - \left\langle B_{A} \right\rangle$$

X. Luo and N. Xu, Nucl. Sci. Tech. 28, 112

(Anti-)baryons yields in Au + Au @ 19.6 GeV

L. Du, H. Gao, S. Jeon and C. Gale, arXiv: 2302.13852 [nucl-th]

The 4th to 6th cumulants in rapidity scan

"... *five and six...show a difference in sign.*" STAR Collaboration, *Phys. Rev. Lett. 130, 082301*

Rapidity scan with tiny *w* approaches to GCE.

Ratios of cumulants in rapidity scan

Ordering of ratios predicted in lattice QCD is also observed.

HotQCD Collaboration, *Phys. Rev. D 101, 074502*

Non-monotonicity induced by more particles accepted.

Thermodynamic variables on QCD phase diagram

Inhomogeneous fireball

Point on QCD phase diagram

The same (anti-)baryon acceptance + $\mathscr{Z}\overline{\mathscr{Z}} = Z^2$

Thermodynamic variables on QCD phase diagram

 $T_{\rm E} \& \mu_{\rm E}$: Extracted variables at chemical freeze-out

 $\langle T(y_s) \rangle \& \langle \mu_B(y_s) \rangle$: Averaged variables of inhomogeneous fireball

Summary

- Kinematic acceptances may significantly affect high-order cumulants
- We investigate the method to extract effective T & μ_B values on QCD phase diagram

Outlook

- Feed-down effect will refine the extraction method for $T \& \mu_B$
- Incorporate with critical behavior to study QCD phase transition
- Consider off-equilibrium dynamics of fluctuations in rapidity scan ... interesting to see...offequilibrium scaling... in 'rapidity scan

Thanks~

Y. Yin, arXiv: 1811.06519

• We derive the expression for net-baryon cumulants generating function within finite rapidity ranges in CE

"We cannot know, as a matter of principle, the present in all its details.

