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Outline

» The QCD critical point.

» The framework of intermittency analysis.

» Results from the STAR experiment.

» Results from a hybrid UrQMD+CMC Model.

» Summary and outlook.



1.1 QCD Phase Diagram and the Critical Point
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1.2 Non-monotonic Energy Dependence of Observables in Heavy-1on Experiment
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» Non-monotonic variation with collision energy of the sensitive observables, is suggested as a possible
signature for the QCD critical point.

» Several measurements from the BES program at RHIC have showed a non-monotonic energy
dependence. These include the net-proton kurtosis, the yield ratio of light nuclei production ---
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1.3 The Framework of Intermittency Analysis

» Based on the 3D Ising-QCD calculations, the density-density function, ( ), for small momentum
transfer ( ) has a power-law (self-similar) structure, which glves rise to large density fluctuations near
the QCD critical point:

< () O)=~1

N. G. Antoniou et. al, PRL 97, 032002 (2006): K.J. Sun, et.al, Phys. Lett. B 774, 103 (2017)
N. G. Antoniou, et. al, Nucl. Phys. A 693, 799 (2001).
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» The intermittency termed as big bursts from small region (cells) of the phase space, 81gnals unusual

density fluctuations. Critical (strong) intermittency 1s expected to developed near the QCD critical point.
s P e

» Density fluctuations can be probed via an intermittency analysis by % S
utilizing the scaled factorial moments, SFMsor ( ), definedas: S 1 .
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Where 1s the number of equal-size cells in which the D-dimensional space is partitioned, g 1s the order of
moments, < ... > denotes averaging over events. 5



1.4 Power-law (Scaling) Behaviors of Scaled Factorial Moments.
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> If a system features intermittency, we expect a power-law behavior of (), equivalently, ( )/ scaling:

() (2% , 1| Critical intermittency near the QCD critical point : ~ ¢"ti@ = 5(" —1)/12(Baryon)
=2( —1)/3(pion)

» Another type of power-law behavior, ( )/ o( )scaling; ( ) () 1

( )/ >( ) scaling can be measured experimentally, but ( )/ scaling could be diluted, or washed out,
during hadronic evolution.

» To describe the general consequences of the phase transition, a scaling exponent is given by:

( —1) Critical intermittency, v = 1.304 (Ginzburg-Landau, entire space phase);
= 1.0 (2D Ising, entire space phase).

» The energy dependence of v could be used to search for the signature of the critical point. 6



2.1 STAR Detector System && Beam Energy Scan Phase 1
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& | Excellent particle identification.

d Measurement of intermittency in Au + Au collisions over abroad energy range of / yny = 7.7 - 200 GeV.
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2.2 Analysis Method

 Charged hadrons identification:

€
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0.4<p;<0.8 (GeV/c) - TPC+TOF | 0.4<p;<1.6 (GeV/c)-TPC+TOF | 0.4<p;<1.6 (GeV/c)-TPC+TOF

(O Centrality determination: use charged particles (0.5 <| | <
1) excluding particles of interest (| | < 0.5) in order to avoid the
auto-correlation.

Au+AU, /S 39 GeVl

m2(GeV?/c?)

] Mixed event method is used to remove background and trivial fluctuations:
()= ()— ()

 Efficiency correction: cell-by-cell method. SVZ =1 -

3 2 4 0 1 > 3

1 2 ( —=1D...( — +1) - p/q(GeV/c)

1 Statistical error: Bootstrap method.
Phys. Rev. C 104, 034902 (2021) R



3.1 Results from the STAR Experiment: Energy Dependence of SFMs
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» () ofcharged hadrons ( , -, *, ¥)in transverse momentum space ( — ).

> The calculations of () were performed inthe 2 12, 100 and up to sixth order ( = 2~6).

> () are larger than ( )atlarge “region. o ( )= ()= ().



3.2 Energy Dependence of A () at  yn=7.7-200 GeV

10’
10°
10°
10*
10°
102) V0 e

—_— 1

E 107"
— 107
LLD- 107
4 108
10°
10*
10°
107 i
1 0 o BT

| 115Gev 14.5 GeV | 19.6 GeV | 27 GeV

‘ -

—

| 54.4GeV 62.4 GeV | 200 GeV | STAR Au+Au, h*, 0-5%

M AF (M)

1
107"

102 /—

10° | 1(I)3 | 1(I)4 II(I)2 10° 10* II
A ()= (H)— ) (3

> A () (q=2-6) increase with increasing 2 and become saturated when 2 is large (2 >4000) at

VN =7.7-200GeV. A () does not obey a power-law behaviorof () ( %) overthe
whole range of 2. The  cannot be extracted in a reliable manner (independently of 2 range).

10

x= 4 + @

10° 10*



3.4 Centrality Dependence of A () at/ yy=19.6 GeV
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> () are larger than ( )atlarge 2 region in numerous mid-central collisions.

> A ( )(q=2-6) increase with increasing 2 and become saturated when  is large (2 >4000) in all
centrality collisions. The power-law behaviorof () ( 2) is not observed in Au+Au collisions.
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3340 ( )/A »( ) Scaling in Au + Au Collisions
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»> A () (q=3-6) obey a strict power-law behavior with A ,( ) in the most central Au+Au collisions.
Clear power-law scaling of ( ) ( ) 1svisible at all collision energies.

» The value of  1s obtained through the best fit as the slope of the straight black line. It did not
significantly change even when the fitting range was varied. 12



3.5 Centrality Dependence of Scaling Exponent in Au + Au Collisions
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» Clear power-law scaling of ( — ) 1sobserved in central Au + Au collisions at \/ yy =7.7-200

GeV.

»  decreases monotonically from the mid-central (30-40%) to the most central (0-5%) Au+Au collisions.
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3.6 Energy Dependence of Scaling Exponent in Au + Au Collisions

() 2( )
7 U2 5o @eSTAR AutAu, B - N
0.6:— 2 @ 0-5% —
05 53_ ) W 10-40% 1 » Scaling exponent () exhibits a non-monotonic
» B - = Z behavior on collision energy and seems to reach a
05L " kg . - . minimum around 4/ = 20-30 GeV 1n the most
_ + T . o central collisions. However, a flat energy dependence
OABE £n sy ® 4 is observed in the mid-central (10-40%) collisions.
Y, 8
0'4;_ t - 2 ® 1 » The observed non-monotonic behavior of needs to
L | t o | be understood with more theoretical inputs.
7 10 20 30 50 100 200
sy (GeV)

Physics Letters B 845, 138165 (2023)
14



4.1 Results from the UrQMD model: Energy Dependence of SFMs
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Phy. Rev. C 106,054905 (2022).

( JandA ( )~=0 from the UrQMD calculations.

10°% ¢
10° - @ %
10¢) ® ® ®
x X x ¥
103} X X -
g X x ¥ X
~— 10+ » - ® -
LL 1P | (€) 39 GeV e b (f) 62.4 GeV
10° ® Fq(M;
® ® Q=
10*
" x T X q=3
x X ® q=4
10°) ¢ ® ¥ g=5
10 a o q=6
10? 10° 10* 102 10° 10* 10? 10° 10°
M2
> () was observed to overlap with
Neither () (% or ()

>( ) scaling is observed after background subtraction.

» The UrQMD model fails to calculate v due to the absence of the power-law scaling of A ()

A o

)

15



4.2 Critical Intermittency for Charged Particles from the CMC Model
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» The CMC sample which incorporates the same statistics, total multiplicity and  distributions as those
in the UrQMD sample at 4/ = 19.6 GeV, exhibit strong power-law scalingof () ( %) and

() 2( )

> The value = 1.03 #* 0.01 extracted from the CMC model, is almost consist with theoretical

expectation (1.0) from the 2D-Ising model calcuations.
Phys. Rev. C106, 054905 (2022) 16



4.3 Energy Dependence of  from the Hybrid UrQ

+CMC Model
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> As 1-2% signal of critical fluctuations from the CMC model
is embedded into the UrQMD model, the energy dependence

of the extracted scaling exponents show that the values are
well within the experimentally measured range.

» There could exist only1-2% of intermittency signal in the
central Aut+Au collisions from the STAR experiment, which
1s similar to 1% 1n S1+Si collisions from the NA49

experiment.

» The current hybrid UrQMD+CMC model still fall to
reproduce the observe non-monotonic energy dependence of
the scaling exponnet from the STAR experiment.
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5 Summary and Outlook

)
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2)

3)

4)

We have presented the published result of the first measurement of intermittency in heavy-ion
collisions at RHIC-STAR.

We observed the expected power-law scaling of () o( ) after background subtraction in
Au+Au collisions at all energies.

Based on the scaling behavior of (), the scaling exponent ( ) is extracted and found to decrease
nonotonically from the peripheral to the central Au+Au collisions.

According to the calculations from the hybird UrQMD+CMC model, there could exist only1-2% of
intermittency signal in the central Au+Au collisions from the STAR experiment, which 1s similar to 1%
in S1+S1 collisions from the NA49 experiment.

A non-monotonic energy dependence is observed in the 0-5% most central collisions with reaching a

minimum around / N = 27 GeV. Whether the observed non-monotonic behavior is related to the CEP
or not, further calculations from dynamical modelling of heavy-ion collisions are required.
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5 Summary and Outlook

Outlook: by utilizing data collected from the BES-II program, we will confirm the energy dependence of
scaling exponent and extend the collision energy range to / nny = 3-200 GeV.
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Intermittency analysis at FXT i/ yy = 3 GeV 1s ongoing...
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