15th workshop on QCD Phase Transition and Relativistic Heavy Ion Collisions

Vector meson polarization measurements in pp and Pb-Pb collisions with ALICE at the LHC

Xiaozhi Bai (白晓智)

University of Science and Technology of China

Zhuhai China, 17th Dec. 2023

- In non-central heavy-ion collisions, short-lived magnetic fields (B) and very strong orbital momentum (L) are expected to be produced.
- > They can influence the global polarization of the produced particles.

Strong magnetic field and orbital momentum

Lifetime increases from mid to forward rapidity, and deceasing quickly with time
 Angular momentum strongly dependents on impact parameter (b)

Introduction to polarization measurements

Polarization axis:

Helicity (HX): direction of vector meson in the collision center of mass frame

Collins-Soper (CS): the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame

Event Plane based frame (EP): axis orthogonal to the reaction plane in the collision center of mass frame

 $W(\cos heta) \propto (1ho_{00}) + (3
ho_{00}-1)\cos^2 heta$

- Recombination of polarized quark (antiquark) during the hadronization
- Polarized quark (antiquark) fragmentation

Quarkonia measurements:
$$W(\cos heta, \phi) \propto rac{1}{3 + \lambda_ heta} \cdot \left(1 + \lambda_ heta \cos^2 heta + \cdots
ight)$$

 $egin{aligned} \lambda_{ heta} &= ext{ polarization parameter} \ \lambda_{ heta} &= 0 ext{ no spin alignment} \end{aligned}$

$$\lambda_ heta = rac{1-3
ho_{00}}{1+
ho_{00}} \quad egin{cases} \lambda_ heta > 0 o
ho_{00} < 1/3 \ \lambda_ heta < 0 o
ho_{00} > 1/3 \end{cases}$$

Z. Liang, X. Wang, PLB 629 (2005) 20-26
Y. Yang, et al. ,Phys. Rev. C 97, (2018)034917
P. Faccioli et al. EPJ C69 (2010) 657-673
X. Sheng, et al., PRL 131 (2023) 4, 042304

- > pp collisions: Important to constrain quarkonium production mechanisms in hadronic collisions
- ➤ AA collisions: Polarization measurements gives access to different time scales and mechanisms, like the early-produced magnetic field, angular momentum, hadronization mechanisms, and strong force field...

ALICE detector (Run 2)

Quarkonia polarization measurements in pp collisions

No strong polarization is observed for J/ψ and $\Upsilon(1S)$ by ALICE at forward rapidity up to $p_T = 15 \text{ GeV}/c$

12/17/23

Vector meson polarization measurements with ALICE

 \geq

Quarkonia polarization measurements in heavy-ion collisions

> Maximum deviation from zero is 2.1 σ in the low $p_{\rm T}$ bin for J/ ψ in Helicity reference frame

ALICE, PLB 815 (2021) 136146 LHCb, JHEP12 (2017) 110 ALICE, PLB 815 (2021) 136146

- Measurement performed with respect to the helicity reference frame
- ▶ Prompt $\mathbf{D}^{*+}\rho_{00}$ compatible with 1/3 within uncertainties (no polarization)
- ► Non-prompt $\mathbf{D}^{*+} \rho_{00} > 1/3$ due to the helicity conservation of the beauty hadrons decay
- The charm quarks are either produced unpolarised or their polarization is washed out during the hadronization process
- An important baseline for future spin alignment measurements of D*+ vector mesons in heavy-ion collisions

> 0 – 10% : ρ_{00} compatible with 1/3, 30 – 50% : ρ_{00} > 1/3 at high p_T > Significant deviation at larger rapidity (0.3 < |y| < 0.8) than at midrapidity (|y| < 0.3)

> First measurement of quarkonium polarization with respect to the event plane

> Significant polarization (~3.5 σ) observed in semicentral collisions (40-60%) in 2 < p_T < 6 GeV/c

- > The significance of the polarization reaches $\sim 3.9\sigma$ at low $p_T (2 \le p_T \le 4 \text{ GeV}/c)$ in 30-50%
- > Interpretation of results requires inputs from theoretical models

> Agreement with the:

- $\rho_{00} < 1/3$ quark recombination at low $p_{\rm T}$
- $\rho_{00} > 1/3$ quark fragmentation at high $p_{\rm T}$
- > At high p_T the fragmentation of heavy quarks polarized by the magnetic field translates to $\rho_{00} > 1/3$?
- Theory guidance needed!

- > The recombination is a dominate process for the J/ ψ production at low $p_{\rm T}$ and midrapidity
- Is the J/ψ global polarization inherited from polarized charm quarks via uncorrelated charm and anticharm recombination?
 More details in poster by Senjie Zhu, on Dec. 15th at 14:00

	K* ⁰	ф	D *+	J/ψ	Υ(1 S)
pp	$\boldsymbol{\rho_{00}} \sim 1/3$ (production plane)	$\boldsymbol{\rho_{00}} \sim 1/3$ (production plane)	$ ho_{00} \sim 1/3$ (HX)	$\rho_{00} \sim 1/3$ (HX and CS)	$\rho_{00} \sim 1/3$ (HX and CS)
Pb-Pb	$\boldsymbol{\rho_{00}} < 1/3 \text{low } p_{\text{T}}$ (RP)		$ ho_{00} > 1/3 \text{ high } p_{\mathrm{T}} $ (RP)	$ ho_{00} < 1/3 (low p_T) (RP) $	$\rho_{00} \sim 1/3$ (HX and CS)

 $\cos(\theta)$

> The J/ ψ spin alignment will be measured via dielectron decay channel at midrapidity, for prompt and non-prompt J/ ψ separately.

The newly installed MFT enables the separation between prompt and non-prompt charmonium at forward rapidity

More details in two posters by Zhenjun Xiong, and Yuan Zhang on Dec. 15th at 14:00

ALI-PERF-549405

> pp collisions:

• The measured J/ψ , Y(1S), D^{*+} , K^{*0} and ϕ , do not exhibit strong polarization

Pb-Pb collisions

- J/ ψ and Y(1S) do not show strong polarization in Helicity and Collins-Soper reference frames, but significant polarization (~3.9 σ) observed w.r.t the reaction plane for J/ ψ
- $D^{*+}\rho_{00}$ depends on the centrality, p_T and rapidity
- Theory guidance is needed to interpret the data

Thanks

Low $p_{\rm T}$

- > Maximum deviation of ρ_{00} in semicentral collisions
- Deviation from 1/3
 - K*0: 3.2 σ (PP) and 2.6 σ (EP)
 - φ : 2.1 σ (PP) and 1.9 σ (EP)
- Larger effect than observed in A polarization
 [ALICE, *Phys.Rev.C* 105 (2022) 2, 029902]

High *p*_T

No centrality dependence and results are consistent with 1/3

PRL 125(2020) 012301

$K^{\ast 0}$ and φ polarization in pp and Pb–Pb collisions

Vector meson polarization measurements with ALICE

D^{*+} global polarization in Pb–Pb collisions

- First measurement of D*+ polarization with respect to the reaction plane
- Multiclass classification algorithm based on BDT used to reduce the combinatorial background and distinguish among prompt and non-prompt components
- $\triangleright \rho_{00}$ extracted taking into account:
 - Event plane finite resolution
 - B-hadron feed-down contribution

