Deep learning jet modifications in heavy-ion collisions

JHEP03(2021)206 & PRL 128, 012301 (2022)

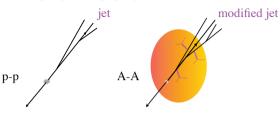
with Daniel Pablos and Konrad Tywoniuk

Yi-Lun Du

Outline

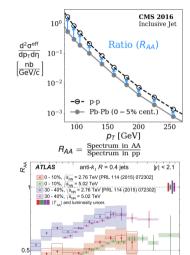
- Motivation: Deep learning jet energy loss
- 2 General Setup & Performance
- 3 Applications
 - Sensitivity of jet observables to in-medium modification
 - Towards jet tomography
- 4 Conclusion and outlook

Jets in the medium



J. Brewer, HP'20

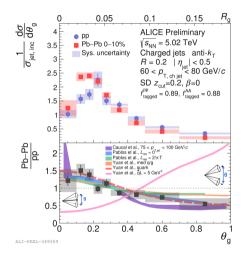
- Quark-gluon plasma (QGP) in heavy-ion collisions: deconfined quarks & gluons, strongly-coupled medium
- Jets, collimated sprays of energetic particles, serving as hard probe to medium properties
- Jets are quenched in the medium via parton energy loss
- Jet modifications: ratio of jet observables distr. between medium and vacuum, with $p_T^{\text{jet}} > p_T^{\text{cut}}$

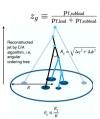


ATLAS collaboration PLB 790 (2019) 108

p_[GeV

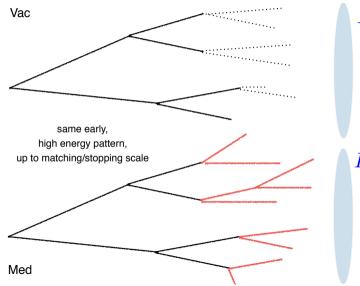
Jet modifications: ambiguous interpretations





- Interplay: jet substructures, e.g., R_a , could
 - be modified during the passage through the medium and/or
 - affect the amount of jet energy loss and then this jet don't pass the p_T cut of the distribution, i.e., selection bias.
- Can we disentangle these two effects with knowledge of the degree of quenching for each individual measured jets?

Define the generalizable energy loss ratio



R

$$E_i$$

Vacuum-like emission

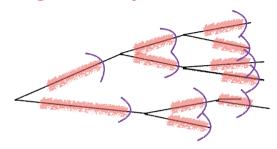
 $\chi_{jh} \equiv \frac{E_f^h}{E_i^h}$

Hypothetical vacuum-like emission

 E_f

Medium induced emission

Strong/weak hybrid model

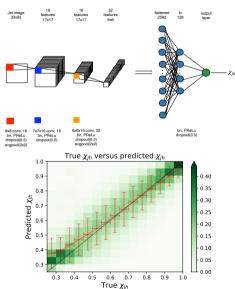


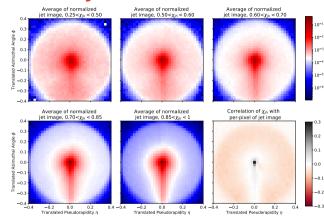
- PYTHIA8 down to hadronization scale
- Strongly coupled energy loss at every stage
- Hadrons from the hydro. wake (medium response)

Casalderrey-Solana, Gulhan, Milhano, Daniel Pablos, Rajagopal JHEP '15.'16.'17

- Vacuum jets using $\hat{p}_{T,\min} = 50$ GeV, with oversampling power p_T^4 .
- PbPb collisions in 0-5% centrality at $\sqrt{s} = 5.02$ ATeV.
- Reconstructed jets with anti- k_T , R=0.4, required to be $|\eta|<2$ and $p_T^{\rm jet}>100\,{\rm GeV}.$
- \sim 250,000 jets. 80% for training and 20% for validation.

CNN Prediction & Interpretability



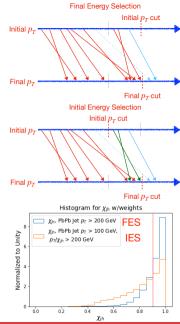


- Jet quenching increases the number of soft particles at large angles
- Jet shape can capture the main feature

Jet selections

Study jet observables for jets that belong to 2 different quenching classes:

- Unquenched class: $\chi_{jh} > 0.9$.
- Quenched class: χ_{ih} < 0.9.
- pp jets: p_T > 200 GeV
- PbPb jets:
 - Final Energy Selection (FES): impose p_T cut on final energy p_T > 200 GeV → Steeply falling energy loss dist. Biased by little quenched samples!
 - Initial Energy Selection (IES): impose p_T cut on initial energy via χ_{jh}, p_T/χ_{jh} > 200 GeV & p_T > 100 GeV → More support of fairly quenched jets in the quenched class. More distinguishable!



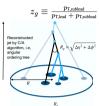
Jet groomed angle, R_g

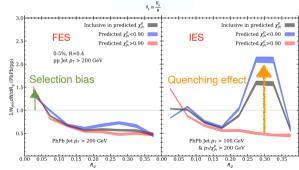
 R_q ratio between PbPb jets and all pp jets

■ FES: Selection bias towards jets with smaller R_g , originated by p_T cut.

■ IES:

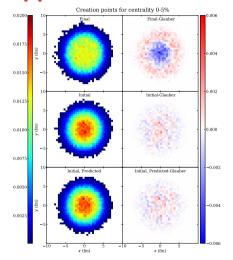
- Unquenched class: still biased due to χ_{jh} cut: to belong to this class, a jet had better to be with smaller R_g , compared with all pp jets.
- Quenched class presents features related to energy loss, compared with unquenched class: jet quenching leads to enhancement of large R_g - creation of a new, semi-hard branch at large angle from medium response.



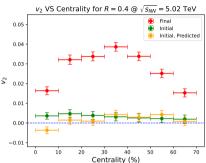


Y.-L. Du, D. Pablos, K. Tywoniuk, JHEP03(2021)206

Applications: creation points & orientation



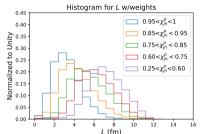
$$v_2 = \left\langle rac{
ho_x^2 -
ho_y^2}{
ho_x^2 +
ho_y^2}
ight
angle$$



- IES "removes" final state interactions (selection bias), since we record "all" jets.
- IES provides access to the genuine jet creation point (path length) distribution and possible initial-state jet anisotropy.

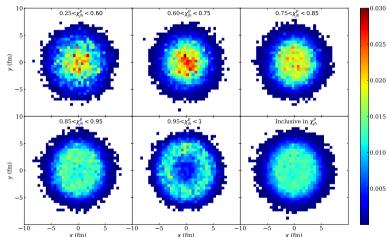
Y.-L. Du, D. Pablos, K. Tywoniuk, Phys. Rev. Lett. 128, 012301 (2022)

Applications: Jet tomography, length VS χ_{jh}



Due to the strong correlation between L and χ_{jh} , selecting jets with different χ_{jh} will naturally select jets that traversed different L

→ Great potential to make tomographic application!



also see Zhong Yang, et al., EPJC 83, 652 (2023)

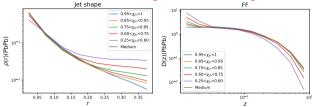
Conclusion and outlook

- CNN can extract energy loss jet-by-jet from jet image with good performance
- Procedure generalisable to many jet quenching models
- Jet shape contains significant predictive power: angular distribution of soft particles
- Mitigate selection bias and reveal medium effects on various jet observables
- Open opportunity to make tomographic study
- Generalizability to other MC quenching models?
- Applicability to more realistic environment: fluctuating background?
- Better performance from other state-of-the-art neural networks?
- Extract traversed length with better precision?
- Unfold jet initial properties apart from jet energy?

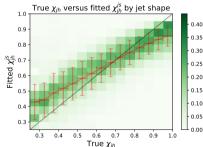
Thanks for your attention!

Prediction with jet observables & Interpretability

Input (size)	Output	Network	Loss
FF (10)	Xjh	FCNN	0.0058
Jet shape (8)	Xjh	FCNN	0.0033
FF, jet shape (18)	Xjh	FCNN	0.0032
FF, jet shape, features (25)	Xjh	FCNN	0.0028
Jet image & FF, jet shape, features (25)	Xjh	API: CNN&FCNN	0.0028



- Jet shape outperforms jet FF.
- Motivates construction from jet shape by 17-parameter fitting:
 - Still a bit worse than CNN
- Jet observables recover the performance by jet image with equivalent predictive power: interpretability!



$$\chi_{jh}^{js} = \sum_{i} \left(rac{
ho_{Ti}}{
ho_{T}}
ight)^{lpha_{i}} r_{i}^{eta_{i}} + \gamma$$

Backup: Soft Drop multiplicity, n_{SD}

n_{SD} ratio between PbPb and pp jets

■ FES: Selection bias towards jets with fewer n_{SD} , originated by p_T cut.

■ IES:

- Unquenched class: still biased due to χ_{jh} cut: to belong to this class, a jet had better to be with fewer n_{SD} , compared with all pp jets.
- Quenched class presents features related to energy loss, compared with unquenched class: jet quenching leads to enhancement of large n_{SD}.



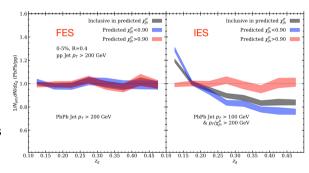
Backup: Groomed momentum sharing fraction, z_g

 z_q ratio between PbPb and pp jets

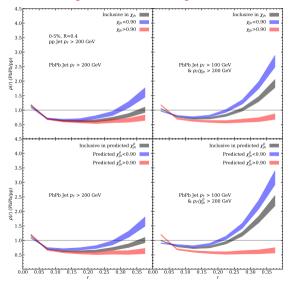
■ FES: No selection bias observed. Scale of emission isn't strongly dependent on splitting fraction z_g .

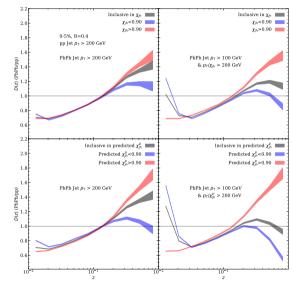
■ IES:

 Quenched class presents features related to energy loss, compared with unquenched class: jet quenching leads to enhancement of smaller z_g subjets.



Backup: Jet shape & FF with FES & IES





Backup: Jet tomography with χ_{jh} & v_2

- $\mathbf{v}_2 = \frac{p_x^2 p_y^2}{p_x^2 + p_y^2}$
- Top row: In-plane jets $(v_2 > 0)$ going left $(p_x < 0)$ and right $(p_x > 0)$
- Bottom row: Out-of-plane jets ($v_2 < 0$) going up ($p_y > 0$) and down ($p_y < 0$)
- To get very quenched, jets have to travel longer in medium. So $v_2 \& p_{x,y}$ are helpful for jet tomography.

