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Jets in the medium

J. Brewer, HP’20

m Quark-gluon plasma (QGP) in heavy-ion collisions:
deconfined quarks & gluons, strongly-coupled medium

m Jets, collimated sprays of energetic particles, serving as
hard probe to medium properties

m Jets are quenched in the medium via parton energy loss

m Jet modifications: ratio of jet observables distr. between
medium and vacuum, with plf* > psut
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Jet modifications: ambiguous interpretations
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m Interplay: jet substructures, e.g., Ay, could
— be modified during the passage through the
medium and/or
— affect the amount of jet energy loss and then this
jet don’t pass the pr cut of the distribution, i.e.,
selection bias.
m Can we disentangle these two effects with
knowledge of the degree of quenching for each
individual measured jets?

Dec 17. 2023 3/17



Define the generallzable energy loss ratio
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Strong/weak hybrid model
m Vacuum jets using P71 min = 50
GeV, with oversampling power
P
m PbPb collisions in 0-5%
centrality at \/s = 5.02 ATeV.

m Reconstructed jets with anti-kr,
R = 0.4, required to be |n| < 2
= PYTHIA8 down to hadronization scale and plf* > 100 GeV.

m Strongly coupled energy loss at every stage m ~ 250,000 jets. 80% for training
and 20% for validation.
m Hadrons from the hydro. wake (medium response)

Casalderrey-Solana, Gulhan, Milhano, Daniel Pablos, Rajagopal JHEP ’15,16,17
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CNN Prediction & Interpretability
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m Jet quenching increases the number
of soft particles at large angles

m Jet shape can capture the main feature
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Jet selections

Study jet observables for jets that belong to 2 different
quenching classes:

— Unquenched class: xj» > 0.9.
— Quenched class:  xj < 0.9.

m pp jets: pr > 200 GeV
m PbPb jets:

— Final Energy Selection (FES): impose pr cut on
final energy pr > 200 GeV — Steeply falling
energy loss dist. Biased by little quenched
samples!

— Initial Energy Selection (IES): impose pr cut on
initial energy via xjn, pr/xjn > 200 GeV &
pr > 100 GeV — More support of fairly quenched
jets in the quenched class. More distinguishable!

Yi-Lun Du

Final Energy Selection

Initial p7 cut

Initial p; ' 2
Final py ; P

Final py cut

Initial Energy Selection
Initial py- cut

Initial py \\ * >
Final py — >

Final p7 cut

Histogram for x;, w/weights

o

Normalized to Unity
-

o

prixp > 200 GeV

3 X POPbJet pr > 200GeV FES
¢ Xin. PbPD Jet pr > 100 GeV,

IES

|

Xin
Dec 17. 2023

7117



Jet groomed angle, R,

Ry ratio between PbPb jets and all pp jets %0 = Dot prowen

m FES: Selection bias towards jets with
smaller Ry, originated by pr cut.
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Applications: creation points & orientation
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m |ES “removes” final state interactions (selection
bias), since we record “all” jets.

m |ES provides access to the genuine jet creation
point (path length) distribution and possible
initial-state jet anisotropy.

Y.-L. Du, D. Pablos, K. Tywoniuk, Phys. Rev. Lett. 128, 012301 (2022)
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Applications: Jet tomography, length VS x;,
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jets with different x;, will
naturally select jets that

traversed different L.

— Great potential to make
tomographic application!
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also see Zhong Yang, et al., EPJC 83, 652 (2023)
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Conclusion and outlook

m CNN can extract energy loss jet-by-jet from jet image with good performance

m Procedure generalisable to many jet quenching models

m Jet shape contains significant predictive power: angular distribution of soft particles
m Mitigate selection bias and reveal medium effects on various jet observables

m Open opportunity to make tomographic study

— Generalizability to other MC quenching models?

— Applicability to more realistic environment: fluctuating background?
— Better performance from other state-of-the-art neural networks?

— Extract traversed length with better precision?

— Unfold jet initial properties apart from jet energy?
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Thanks for your attention!
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Prediction with jet observables & Interpretability

Jet shape
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Backup: Soft Drop multiplicity, ngp

ngp ratio between PbPb and pp jets

m FES: Selection bias towards jets with
fewer ngp, originated by pr cut.

m IES:

— Unquenched class: still biased due to
Xjn cut: to belong to this class, a jet had
better to be with fewer ngp, compared
with all pp jets.

— Quenched class presents features
related to energy loss, compared with
unquenched class: jet quenching leads
to enhancement of large ngp.
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Backup: Groomed momentum sharing fraction, z,

z4 ratio between PbPb and pp jets

FES: No selection bias observed. Scale
of emission isn’t strongly dependent on
splitting fraction z,.

IES:
— Quenched class presents features
related to energy loss, compared with

unquenched class: jet quenching leads
to enhancement of smaller z, subjets.
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Backup: Jet shape & FF with FES & IES
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Backup: Jet tomography with y;, & v»
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m Top row: In-plane jets
(vo > 0) going left (px < 0)
and right (px > 0)

m Bottom row: Out-of-plane
jets (v2 < 0) going up
(py > 0) and down (p, < 0)

m To get very quenched, jets
have to travel longer in
medium. So v» & py , are
helpful for jet tomography.

Yi-Lun Du Dec 17. 2023 17/17



	Motivation: Deep learning jet energy loss
	General Setup & Performance
	Applications
	Sensitivity of jet observables to in-medium modification
	Towards jet tomography

	Conclusion and outlook

