Flavor dependence of jet quenching in heavy-ion collisions

Shan-Liang Zhang (张善良)

South China Normal University In collaboration with Enke Wang, Hongxi Xing and Ben-Wei Zhang

The 15th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics December 15-19, 2023, Zhuhai, China

- Motivation
- Framework

- Colour-charge dependence of R_{AA}
- Centrality dependent R_{AA}
- Parton mass dependent R_{AA}

3 Summary

Summary 000

Motivation

Jet quenching

- The Quark-gluon plasma (QGP), predicted by QCD and confirmed at RHIC and LHC, is a hot and dense medium.
- Jet quenching: energy loss when a jet propagates in the medium G.Y.Qin and X.N.Wang, Int.J.Mod.Phys.E 24, 9no.11, 1530014

a very powerful hard probe to investigate the properties of QGP. Apolinario et al., arXiv:2203.16352
Nuclear modification factor: RevModPhys.90.025005

$$R_{AA} = \frac{1}{\langle N_{coll}^{AA} \rangle} \frac{d^2 N_{AA}/dp_T d\eta}{d^2 \sigma_{pp}/dp_T d\eta}$$

EPJC 83(2023)5,438

Motivation

ATLAS measurements of $\gamma/{\rm b}\text{-jet}~R_{\rm AA}$

• $R_{AA}^{\gamma\text{-jet}} > R_{AA}^{\text{jet}}$, color factor dependence of parton-QGP interaction. • $R_{AA}^{b\text{-jet}} > R_{AA}^{\text{jet}}$, suggest a role for mass and colour-charge effects in partonic energy loss. Framework

Flavor decomposition of jet R_{AA}

Nuclear modification factor R_{AA}

$$R_{AA}^{C} = \frac{\sum_{i} R_{AA}^{i,C} d\sigma_{pp}^{i}}{\sum_{i} d\sigma_{pp}^{i}} = R_{AA}^{g,C} + \sum_{i \neq g} (R_{AA}^{i,C} - R_{AA}^{g,C}) f_{i}$$
(1)

where $f_i = d\sigma_{pp}^i / \sum_i d\sigma_{pp}^i$ is the fraction of parton *i* initiated jet. The flavor dependent $R_{AA}^{i,C}$

$$R_{AA}^{i,C}(p_{T}) = \frac{\int d\Delta p_{T} d\sigma_{pp}^{i}(p_{T} + \Delta p_{T}) \otimes W_{AA}^{i,C}(x)}{d\sigma_{pp}^{i}(p_{T})},$$
(2)

Energy loss distributions Y.He, L.G.Pang and X.N.Wang, PhysRevLett.122.252302

$$W^{i}(x) = \frac{\alpha_{i}^{\alpha_{i}} x^{\alpha_{i}-1} e^{-\alpha_{i}x}}{\Gamma(\alpha_{i})}, \begin{cases} x = \Delta p_{T}^{i} / \langle \Delta p_{T}^{i} \rangle \\ \langle \Delta p_{T}^{i} \rangle = \beta_{i} (p_{T} / p_{T}^{0})^{\gamma_{i}} \log(p_{T} / p_{T}^{0}) \end{cases}$$
(3)

Three parameters in the above for each parton type: $[\alpha_i, \beta_i, \gamma_i]$ Bayesian analysis:

$$P(\theta|data) = \frac{P(\theta)P(data|\theta)}{P(data)}$$
(4)

Framework

Cross sections in p+p and in Pb+Pb

• $R_{\Lambda\Lambda}^{b-\text{jet}}/R_{\Lambda\Lambda}^{\text{jet}} > 1$, the mixture of mass effect and color effect.

steeper than γ +jet, similar as b-jet.

- Incl. jet: gluon(quark) jet dominates in low (large) p_{T} .
- γ +jet: quark initiated jet dominates ($\sim 80\%$).
- *b*-jet: gluon initiated jet contributes about 40%.

Summary 000

Colour-charge dependence of RAA

Bayesian data-driven method

- Uniform prior distribution for $[\alpha_i, \beta_i, \gamma_i] \in$ [(0, 10), (0, 8), (0, 0.8)]
- 2M MCMC steps for training, then 2M steps for scanning the parameter space
- All parameters are well constrained.

Extracted parameters for parton energy loss distributions

(0-10%)5.02 TeV					
	α	β	γ		
gluon	4.36±2.07	$1.78{\pm}0.38$	0.25±0.03		
quark	0.5±0.07	$0.39{\pm}0.17$	0.32±0.13		

Summary 000

Colour-charge dependence of RAA

Gluon and quark jet energy loss in Pb+Pb

- Clear flavor hierarchy of jet energy loss, $\Delta E_g > \Delta E_q$.
- Quark jet energy loss shows a weaker p_T dependence.
- Agree with data and LBT results. PRC.91.054908, PRC.94.014909

Introduction

Numerical results

Summary 000

Colour-charge dependence of RAA

Colour-charge dependence of R_{AA}

[arXiv:2303.14881]

 R_{AA}^{ref} is shown by assuming that inclusive jet has the same quark fraction as γ +jet.

- Large quark-initiated jet fraction underlies $R_{AA}^{\gamma+jet}/R_{AA}^{jet}$ at large p_T
- The flat spectra give the dominate contribution to $R_{AA}^{\gamma+\text{jet}}/R_{AA}^{\text{jet}}$ at low p_T .

Centrality dependent R_{AA}

Extract quark/gluon jet R_{AA} in different Centrality

- Uniform prior distribution for $[\alpha_i, \beta_i, \gamma_i] \in [(0, 10), (0, 8), (0, 0.8)]$
- Fitting to inclusive jet R_{AA} and γ +jet R_{AA} in 10-30% and 30-80% centrality separately.
- The optimized results agree perfectly with data.
- *R*_{AA} for quark/gluon-initiated jets in 10-30%, 30-80% centrality are extracted.

Extracted parameters for parton energy loss distributions

		α_i	β_i	γ_i
10-30%	gluon	2.17±0.94	$1.47{\pm}0.44$	$0.25 {\pm} 0.04$
	quark	$5.81{\pm}1.8$	$1.27{\pm}0.12$	$0.09{\pm}0.02$
30-80%	gluon	4.78±1.87	$1.16{\pm}0.17$	$0.11{\pm}0.03$
	quark	6.4±2.63	$0.7{\pm}0.05$	$0.09{\pm}0.01$

10/16

Centrality dependent RAA

Summary 000

Centrality dependent of quark/gluon jet R_{AA}

[arXiv:2303.14881]

Fitting the centrality dependent R_{AA} of quark- and gluon- initiated jet via a simple parametrization:

$$h^i(C) = a_i C^2 + b_i C + c_i$$

	gluon	quark
$a_i(\times 10^{-5})$	$12.39{\pm}2.83$	3.36±2.45
$b_i(\times 10^{-3})$	-2.95 ± 1.74	6.65±1.20
Ci	$0.7{\pm}0.021$	0.309 ± 0.009

- Quark-initiated jet has weaker dependence on the centrality.
- Need more data to identify the jet R_{AA} in peripheral collisions (> 60%).

Summar 000

Centrality dependent R_{AA}

Prediction of jet R_{AA} in PbPb

• Our extracted centrality dependence of quark and gluon jet energy loss distributions can describe the experimental data *R*_{AA} very well.

Summary 000

Parton mass dependent R_{AA}

Extract flavor dependent jet energy loss in Pb+Pb

[arXiv:2303.14881]

 $f^{b-jet} = f^{jet}$: assuming *b*-jet has the same fraction of gluon initiated jet as inclusive jet.

 $R_{AA}^{b} = R_{AA}^{quark}$: *b*-quark jet lose the same fraction of energy as light-quark initiated jet.

- Clear flavor hierarchy of jet energy loss, $\Delta E_g > \Delta E_q > \Delta E_b$.
- The color charge effect have greater impacts on the ratio $R_{AA}^{b.jet}/R_{AA}^{iet}$ than parton mass effect, which decrease moderately at $p_{\rm T} \sim 300 \text{ GeV}/c$.
- Agree with data and LBT results.

- The flavor-dependent jet energy loss distributions are extracted via a Bayesian data-driven method from experimental data.
- Clear flavor hierarchy of jet energy loss, $\Delta E_g > \Delta E_q > \Delta E_b$.
- The energy loss of quark-initiated jets shows weaker *p*_T and weaker centrality dependence.
- Large quark jet fraction underlies $R_{AA}^{\gamma+jet}/R_{AA}^{jet}$ at large p_T , while the flat spectra give the dominate contribution to $R_{AA}^{\gamma+jet}/R_{AA}^{jet}$ at low p_T .
- The color charge effect have greater impacts on the ratio $R_{AA}^{b\text{-jet}}/R_{AA}^{\text{jet}}$ than parton mass effect, which decrease moderately at $p_{\mathrm{T}} \sim 300 \ \mathrm{GeV}/c$.

Thanks!

Summary

Centrality dependent jet R_{AA}

- Inclusive jet R_{AA} show stronger dependence on centrality than γ +jet R_{AA} .
- different quark/gluon fraction or quark-initiated jet has weaker dependence on the centrality?

