Elliptic anisotropy of hard probes from parton scatterings in small collision systems

Siyu Tang (汤思宇) Wuhan Textile University (武汉纺织大学)

Based on: <u>2303.06577</u>, <u>2210.07767</u> and ongoing work with: Chao Zhang (张潮), Renzhuo Wan (万仁卓), Zi-wei Lin (林子威)

- Hard probes: originate from hard scatterings with high Q²
 - Penetrating probes created before the QGP is formed

- Hard probes: originate from hard scatterings with high Q²
 - Penetrating probes created before the QGP is formed

High-p_T hadron/jets, Jet quenching

- Hard probes: originate from hard scatterings with high Q²
 - Penetrating probes created before the QGP is formed

- High-p_T hadron/jets, Jet quenching
- Heavy flavours: charm and beauty
- Large mass, short formation time
- Small rate of thermal production in the QGP

e± u±

- Hard probes: originate from hard scatterings with high Q²
 - Penetrating probes created before the QGP is formed

- High-p_T hadron/jets, Jet quenching
- Heavy flavours: charm and beauty
- Large mass, short formation time
- Small rate of thermal production in the QGP

Azimuthal anisotropy

• The azimuthal anisotropy is studied by a Fourier expansion of azimuthal distribution of final-state particles: $v_n = \langle \cos(n(\varphi - \Psi_n)) \rangle$

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{n})))$$
 Flow coefficients
Initial spatial anisotropy in momentum
space
 $\int \frac{1}{2\pi} \frac{d^{2}N}{p_{T} dp_{T} dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{n})))$ Flow coefficients
 $\int \frac{1}{2\pi} \frac{1}{p_{T} dp_{T} dy} \frac{1}{p_{T} dp_{T} dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\varphi - \Psi_{n})))$

Pressure gradient
Expansion of the QGP

Azimuthal anisotropy

• The azimuthal anisotropy is studied by a Fourier expansion of azimuthal distribution of final-state particles: $v_n = \langle \cos(n(\varphi - \Psi_n)) \rangle$

- Open heavy flavours:
 - Low and intermediate p_{T} : collective motion and properties of thermalization
 - High $p_{\rm T}$: path-length dependence of the heavy-quark energy loss

Small collision systems

- Long-range flow-like angular correlations are observed in highmultiplicity small collision systems
 - A clear mass ordering effect at low p_T and baryon-meson splitting at intermediate p_T is observed in p–Pb even pp collisions

Small collision systems

- Long-range flow-like angular correlations are observed in highmultiplicity small collision systems
 - A clear mass ordering effect at low p_T and baryon-meson splitting at intermediate p_T is observed in p–Pb even pp collisions
 - hydrodynamics? initial-state effects? or other finals-state effects?

Possible Explanations

Possible Explanations

Parton escaping

A.Bzdak et al, Phys. Rev. Lett. 113, 252301 (2014)

- The AMPT calculations with string melting can nicely describe the v_2 and v_3 in p-Pb collisions with a modest elastic cross section ($\sigma = 1.5 - 3$ mb)
 - Parton escape mechanism is responsible for the anisotropy build up in AMPT

Parton escaping

- The AMPT calculations with string melting can nicely describe the v_2 and v_3 with a modest elastic cross section ($\sigma = 1.5 3$ mb)
 - ➡ Parton escape mechanism is responsible for the anisotropy build up in AMPT
 - Parton cascade + coalescence can approximately reproduce the NCQ scaling of v₂ at intermediate kE_T

Parton escaping

- The AMPT calculations with string melting can nicely describe the v_2 and v_3 with a modest elastic cross section ($\sigma = 1.5 3$ mb)
 - ➡ Parton escape mechanism is responsible for the anisotropy build up in AMPT
 - ➡ Parton cascade + coalescence can approximately reproduce the NCQ scaling of v₂ at intermediate kE_T

A MENTINE UNIT

How about the heavy flavors?

A Multi-Phase Transport (AMPT) model

A REAL PROPERTY AND A REAL

 Remove the p0 cut for the HF production HIJING 1.0+modernPDF/EPS09s/localscaling/HF **Heavy quark** Light quark **Spectator Nucleons** Replace the PDF and nPDF Strings melt to q & qbar via Cronin effects intermediate hadrons **ZPC (Parton Cascade)** Local scaling for self-consistent size dependence Partons freeze out collision system dependence is Hadronization (Quark Coalescence+Fragmentation) introduced in Lund symmetric string fragmentation function (b_{L}) and minijet cutoff (p_0) **Extended ART (hadron cascade)** Hadrons freeze out (at a global cut-off time); then strong-decay all remaining resonances C. Zhang, Phys.Rev.C 99 (2019) 6, 064906 **Final-state Particle** . Zhang, Phys.Rev.C 101 (2020) 3, 034905 C.Zhang, Phys.Rev.C 104 (2021) 1, 014908 Siyu Tang

Improved AMPT structure

Heavy flavor R_{pA} and v_2 at mid-rapidity

- A simultaneous description of the R_{pA} and v_2 is provided by the improved AMPT model
- The Cronin effect significantly enhances D⁰ production at intermediate/ high p_T , while modestly decrease the D⁰ meson v_2
- Parton scatterings are mostly responsible for generating the D⁰ meson v_2

More details in Chao's poster

Heavy flavors spectrum at forward rapidity

Siyu Tang

Heavy flavors v₂ at forward rapidity

Calculation method: long-range two-particle correlation

• The nonflow contribution is estimated in low-multiplicity collisions $Y(\Delta \varphi, 0 - 10\%) - F \cdot Y(\Delta \varphi, 60 - 100\%) = a_0 + 2 \sum_{n=1} v_n \cos(n\Delta \varphi)$

Sivu Tang

 the contribution in the low-multiplicity events is scaled by the ratio between the "away-side jet" yield in low- and high-multiplicity events

Physics Letters B 846 (2023) 137782

Heavy flavors v₂ at forward rapidity

- A significant suppression is shown after the nonflow subtraction for light flavors, but not for heavy flavors
- The mass ordering of v_2 between light and heavy flavors is also obtained at forward rapidity with the AMPT model

Heavy flavors v₂ at forward rapidity

- The muons from meson decay are obtained using PYTHIA decayer
- A reasonable agreement with the data at forward and backward rapidities is provided by the improved AMPT model

 Systematic calculations of the heavy flavor v₂ are perform in p–Pb collisions with an improved multi-phase transport model

- Systematic calculations of the heavy flavor v₂ are perform in p–Pb collisions with an improved multi-phase transport model
 - Including a strong Cronin effect allows a simultaneous description of the D⁰ spectrum and v_2
 - The parton scatterings generate a significant v_2 for charm mesons, and well reproduce the rapidity dependence observed in data

- Systematic calculations of the heavy flavor v₂ are perform in p–Pb collisions with an improved multi-phase transport model
 - Including a strong Cronin effect allows a simultaneous description of the D⁰ spectrum and v_2
 - The parton scatterings generate a significant v_2 for charm mesons, and well reproduce the rapidity dependence observed in data
- Extend the study to higher *p*_T, and other hard probes (e.g., jets), where more mechnisms need to be considered (radiative energy loss, fragmentation of light quark, ...)

- Systematic calculations of the heavy flavor v₂ are perform in p–Pb collisions with an improved multi-phase transport model
 - Including a strong Cronin effect allows a simultaneous description of the D⁰ spectrum and v_2
 - The parton scatterings generate a significant v_2 for charm mesons, and well reproduce the rapidity dependence observed in data
- Extend the study to higher *p*_T, and other hard probes (e.g., jets), where more mechnisms need to be considered (radiative energy loss, fragmentation of light quark, ...)

Modern PDF and nPDFs

- *Duke-Owens*: used in the published AMPT model. *Outdated*;
- Modern PDF(CTEQ6.1M): gluon and quark distribution are much higher than Duke-Owens parameterization. important for LHC energies

- A spatial dependence of nuclear shadowing functions(eps09s NLO) is incorporated in the AMPT model.
- Energy dependence of the momentum cutoff p0 and soft cross-section σ_{soft} are needed for the pp collisions.
- A larger value of p_0 is needed for the AA collisions than pp collisions. related to $Q_s \propto A^{1/6}$ Chao Zhang et al. PRC (2019)

Improved multi-phase transport model for heavy flavors

 $gg \rightarrow gg$ cross section in leading-order pQCD is $\frac{d\sigma}{dt} \sim \frac{9\pi\alpha_s^2}{2t^2}$ divergent for massless g, $\frac{d\sigma}{dt} \sim \frac{9\pi\alpha_s^2}{2t^2}$ so HIJING uses a minijet cutoff p₀ for minijets (of ALL flavors).

But heavy flavor (HF) production does not need a cutoff due to heavy quark mass $>> \Lambda_{QCD}$ (e.g. in FONLL)

$$g + g \rightarrow Q + \bar{Q}$$
 $q + \bar{q} \rightarrow Q + \bar{Q}$

- So we remove the p_0 cut on HF productions Zheng et al. PRC (2020) in the two-component model HIJING (initial condition for AMPT)
- Unlike HIJING, we include HF in σ_{jet} : $\sigma_{jet} = \sigma_{jet}^{LF} + \sigma^{HF}$
- We also correct factor of $\frac{1}{2}$ in certain σ_{jet} channels

Improved multi-phase transport model for heavy flavors

Zheng et al. PRC (2020)

- Older/public AMPT charm yield << data
- Removing p_0 in HF production greatly enhances charm yield
- This AMPT model well describes world data on total $C\bar{C}$ cross section

Siyu Tang

Local scaling for self-consistent size dependence in AMPT Lund symmetric string fragmentation function: $f(z) \propto z^{-1}(1-z)^{a_L} e^{-b_L m_T^2/z}$ b_L typical values (in 1/GeV²): ~ 0.58 (PYTHIA6.2), 0.9 (HIJING1.0), 0.7-0.9 (AMPT for pp)

 $b_L \sim 0.15$ is needed for string melting AMPT to describe ZWL, PRC (2014) the bulk matter at high energy AA collisions. This corresponds to a much higher string tension:

$$\langle p_T^2 \rangle \propto \kappa \propto \frac{1}{b_L(2+a_L)}$$

pp and AA collisions need different values of \mathbf{b}_L ; same for Chao Zhang et al. PRC (2019) minijet cutoff \mathbf{p}_0 (for modern PDFs, is related to $Q_s \propto A^{1/6}$) Zheng et al. PRC (2020)

 \rightarrow We scale them with local nuclear thickness functions:

$$b_L(s_A, s_B, s) = \frac{b_L^{pp}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$$
$$p_0(s_A, s_B, s) = p_0^{pp}(s)[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$$

Chao Zhang et al. PRC (2021)

ZWL et al. PRC (2005)

We fit charged hadron $\langle p_T \rangle$ in *pp* to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb $\langle p_T \rangle$ data to determine $\alpha(s)$, $\beta(s)$ versus energy

Local scaling for self-consistent size dependence in AMPT The scaling allows AMPT to self-consistently describe the system size dependence,

Siyu Tang

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the
$$k_T$$
 width as $w = w_0 \sqrt{1 + (n_{coll} - i)\delta}$

grows with *ncoll*: # of NN collisions of the wounded nucleon(s), *i*=1 for $C\bar{C}$ produced from the radiation of 1 wounded nucleon, =2 for $C\bar{C}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35 \text{ GeV}/c) \sqrt{b_{\text{L}}^0 (2 + a_{\text{L}}^0)/b_{\text{L}}/(2 + a_{\text{L}})} \propto \text{K}$$

motivated by $\kappa \propto \frac{1}{b_{\text{L}}(2 + a_{\text{L}})}$ for Lund string fragmentation

• For comparison, $\langle k_T^2 \rangle$ (in GeV²) at 5.02TeV for minimum-bias collisions: Our value HVQMNR Vogt, PRC (2021)

pp	0.04	1.46
p-Pb	3.27	2.50

Our extra broadening (p-Pb relative topp) is stronger than HVQMNR; further checks are needed (e.g.from J/ψ or Λ spectra).

