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• Introduction
• Physical picture for long-range ridge 

correlations in CGC
• Rapidity correlations and dependences on 
𝑝" and 𝑠$$

• Fine structures of azimuthal correlations
• The features of two dimensional ∆𝑦-∆𝜑

correlations

OUTLINE
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Ridge in small systems observed in experiments

The CMS collab., J. Phys. G 38 (2011) 124051.

J. Phys. G: Nucl. Part. Phys. 38 (2011) 124051 D Velicanu (for the CMS collaboration)
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Figure 1. Two-dimensional (2D) per-trigger-particle associated yield of charged hadrons as a
function of !η and !φ with jet peak cutoff for better demonstration of the ridge from high-
multiplicity (N ! 110) pp collisions at

√
s = 7 TeV, for (a) 2 <p

trig
T < 3 GeV/c and 1 < passoc

T < 2
GeV/c and (b) 5 < p

trig
T < 6 GeV/c and 1 <passoc

T < 2 GeV/c.
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Figure 2. Integrated near-side (|!φ| <!φZYAM) associated yields for 2 <p
trig
T < 3 GeV/c and

1 <passoc
T < 2 GeV/c, above the minimum level found by the ZYAM procedure, as a function of

|!η| for the high-multiplicity (N ! 110) pp collisions at
√

s = 7 TeV. The statistical uncertainties
are shown as bars, while the brackets denote the systematic uncertainties.

details see [4]. The pp data used in this extended analysis are collected under almost the same
conditions as those used in the publication of the first pp ridge observation [1] with about a
factor of 2 increase in statistics, 660K N ! 110 events.

The per-trigger-particle associated yield distribution of charged hadrons as a function of
!η and !φ in high-multiplicity (N ! 110) pp collisions at

√
s = 7 TeV with trigger particles

with 2 <p
trig
T < 3 GeV/c and associated particles with 1 <passoc

T < 2 GeV/c is shown in
figure 1 obtained with the full statistics data in 2010. The ridge-like structure is clearly
visible at !φ ≈ 0 extending to |!η| of at least four units as previously observed in [1].
However, at higher p

trig
T of 5–6 GeV/c as presented in figure 1, the ridge almost disappears.

The absolute values of !η and !φ are used in the analysis; thus, the resulting distributions
are symmetric about (!η,!φ) = (0, 0) by construction.
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• the plateau at 2 < ∆𝜂 ≲ 3.6
• the rebound at ∆𝜂 ≈ 4

long range ridge structure 

1 }
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The physics underlying long range ridge correlations 
in small systems is inconclusive yet. 

• Final state effects, i.e. Hydrodynamics
• Initial correlations, CGC
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202 N. Armesto et al. / Nuclear Physics A 781 (2007) 201–208

Fig. 1. (a) Two sheets of colored glass approaching one another. (b) After the collision, an equal and opposite charge
density of color electric and color magnetic charges are set up on each nucleus. This induces longitudinal color electric
and magnetic fields in the region between the nuclei.

The physical picture of the soft component of the hadronic wavefunction can be easily under-
stood in terms of the phase space distribution

η = dN

dy d2pT d2rT
. (1)

For pT < Qsat, where Qsat is the saturation momentum, η ∼ 1/αs . This means that the quantum
mechanical gluon states are multiply occupied, and saturate at 1/αs . At this phase space density,
repulsive interactions become large. As one adds more gluons to the system, these components
of the hadronic wavefunction remain fixed, since the repulsive interaction energy makes this
unfavorable relative to adding in a gluon in a less occupied state at higher transverse momentum.
Above the saturation momentum, the phase space density becomes small. When one adds more
gluons to the system, they typically have momenta above and near the saturation momentum.
This increases the saturation momentum. The renormalization group equations for the color glass
condensate predict that the saturation momentum never saturates, that is, it grows with decreasing
x of the gluons in the wavefunction [12–15]. One is perpetually adding in more gluons at an ever
increasing saturation momentum.

When applied to hadron–hadron collisions, one imagines the collision of two sheets of colored
glass [16–23]. Initially, the CGC fields are transversely polarized color electric and magnetic
fields. At a very short time after the sheets collide, t ∼ e−κ/αs , the fields become longitudinal
electric and magnetic fields in the central region between the colliding nuclei, and the transverse
field in this region vanishes. The original transversely polarized fields are associated with the fast
moving components of the nuclei and remain intact. This situation is shown in Fig. 1. The matter
produced immediately after the collision is called the glasma. It has properties distinct from the
color glass condensate and the quark gluon plasma. It exist at times intermediate between the
two, and has some properties in common with both the CGC and the QGP, hence the name.

The origin of the longitudinal fields arises because as the sheets of colored glass pass through
one another, the fast moving components have added to them a distribution of color electric and
color magnetic charge. The charge density in the transverse plane of one nucleus is the negative
of that in the other nucleus.

This picture of the fields has a restricted range of validity. For the effective action which
describes these fields to be valid, we require that the field exist over a region of rapidity

$y ! 1/αs . (2)

GlasmaColor glassColor glass

N. Armesto, L. McLerran, C. Pajares, NPA 781 (2007) 201.

CGC dynamics describe Initial state in high energy collisions

strong longitudinal color field
approximately boost invariant 
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Novel correlation phenomena 43

Low color charge density High color charge density
(min. bias) (high multiplicity)

Jet
Graph

q

p
↵

4

s q

p
↵

0

s

Glasma
Graph

q

p
↵

6

s q

p
↵

�2

s

Table 1. Power counting for multiparticle production in QCD in the dilute (left column) and
dense (right column) limit of color sources. The top row shows the diagram responsible for mini-
jet production (hadrons produced primarily back-to-back in azimuthal angle). The bottom row
shows the “glasma” diagram responsible for the near-side collimation that is long-range in rapidity.
Each three-gluon vertex or coupling to a bare parton is proportional to g. Each gluon coupling to
a blob contributes 1/g.

gluons from a single t-channel gluon exchange as shown in the upper left amplitude
in table 1. We refer to this diagram as the Jet Graph, since the gluon pairs that
are produced in this channel are predominately back-to-back in azimuthal angle.
We should stress that we are interested in mini-jets (i.e. soft dihadron correlations)
and not jets in the usual sense studied in collinear factorization.

The second class of diagrams shown in the lower left of Fig. 1, has two gluons
produced from two t-channel gluon exchanges. As drawn here the diagram appears
disconnected and one might conclude does not contribute to an intrinsic two-particle
correlation. This is not the case because the averaging over the color sources intro-
duces non-trivial connections within the seemingly disconnected diagram.

In the dilute limit each vertex (both the three-gluon and the coupling to the
valence parton) come with a single power of the strong coupling constant g. After
squaring the jet amplitude the cross section scales as ↵

4

s. The glasma diagram on
the other hand has six such vertices and the cross-section is proportional to ↵

6

s and
is therefore suppressed by ↵

2

s in the dilute limit of both projectile and target.
In the high energy limit the power counting changes dramatically. By high

Color Glass

Color Glass

Achievement of CGC on long range ridge correlations 

• 𝑁45 and 𝑝" dependence of the long 
range azimuthal correlations in pPb
collisions at 5.02 TeV at the LHC 

• Describe CMS, ALICE and ATLAS 
data simultaneously with a common set 
of parameters

K. Dusling, R. Venugopalan, Phys. Rev. D 87 (2013) 051502(R). 
K. Dusling, R. Venugopalan, Phys. Rev. D 87 (2013) 054014. 
K. Dusling, R. Venugopalan, Phys. Rev. D 87 (2013) 094034. 

Glasma graph

(1) Only focus on azimuthal correlations at large ∆𝜂
(2) Lack a clear physical picture of correlation 

structure in 𝜂 direction
We will focus on 𝜂 direction in this study. 
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• Gluons of different x are located at different 
rapidity regions 

• Gluon dynamics is a function of 𝑦.

∵ 𝑥 =
p;
𝑠
e±>,

For 𝑠 = 7 TeV, p; = 2 GeV, 

D. Zhang, Y. Zhao, M. Xu et al. Nuclear Physics A 1011 (2021) 122201

Fig. 1. (a) The quantum evolution of gluons in the right moving projectile. The black axis represents the longitudinal 
momentum fraction x of partons in the projectile, and the blue axis roughly indicates corresponding rapidity y. (b) The 
quantitative correspondence between x regions and rapidity regions for the case of p⊥ = 2 GeV/c in the collision of √

s = 7 TeV. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

y ! 3.5 corresponds to x " 10−2. It means that gluons at central rapidity region (|y| ! 1.2) re-
flect properties of the small-x (x " 10−3), as the green band shows in Fig. 1(b). In contrast, 
gluons at middle rapidity regions (1.2 < |y| ! 3.5), as the blue bands show in Fig. 1(b), present 
features of moderate-x (10−3 < x < 10−2) degree of freedom. Within this region, radiated glu-
ons still dominate, but contributions of color sources begin to show up. The large-x (x # 10−2) 
degrees of freedom, i.e. gluons at large rapidity (|y| > 3.5), act as sources and are referred to as 
source gluons, which are denoted by red bands in Fig. 1(b).

It has been demonstrated that, the strong correlation between radiated gluons and source 
gluons can explain long range rapidity correlations [27,28]. However, ridge correlations in ex-
periments are usually measured within certain rapidity or pseudorapidity windows. For example, 
the pseudorapidity windows of ALICE and CMS are [-0.9, 0.9] and [-2.4, 2.4], respectively. A 
quantitative comparison of results from different experiments requires a study of the rapidity 
window dependence of ridge correlations.

On the theoretical side, different rapidity windows are expected to reveal gluon dynamics at 
different x values. Fig. 2 demonstrates that different rapidity windows (YW for short) pick pairs of 
different x when a given rapidity gap like !y = 2 is being concerned. A narrow rapidity window 
only include contributions of radiated gluons, while a wider rapidity window can further include 
correlations between radiated gluons and source gluons. So, rapidity window dependence of long 
range ridge correlations is sensitive to the quantum evolution of gluon saturation dynamics.

Considering the above reasons, it would be valuable to study the rapidity window dependence 
of the ridge correlations systematically. This paper is organized as follows. In section 2, the 
definition of correlation function and some related formulae of single- and double-gluon inclu-
sive production in CGC framework are given. The formulae in this manuscript follow those in 
Ref. [21–23] and are identical with those at gluon level without fragmentation functions. The 
new aspects of analysis method here lie in the exploration of contributions of different x degrees 
of freedom. Results of correlations are shown and discussed in section 3, where the sensitivity to 
rapidity windows are carefully compared. Section 4 gives the summary and discussion.

2. Two-gluon !y-!φ correlations from high energy QCD evolution

In a high energy collision, both the projectile and the target are regarded as high parton den-
sity sources. When they pass through each other, strong longitudinal color electric and magnetic 
fields are formed. The framework that describes the physics of high parton densities and strong 

3

𝑥 < 10CD

𝑦 < 1.2

10CD < 𝑥 < 10CE

1.2 < 𝑦 < 3.5

𝑥 > 10CE

𝑦 > 3.5

radiated gluons 
(r)

source gluons
(s)(m)

+ right moving projectile
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𝐶 𝐩;, 𝑦J, 𝐪;, 𝑦L =

d𝑁E
dE𝐩;d𝑦JdE𝐪;d𝑦L
d𝑁

dE𝐩;d𝑦J
d𝑁

dE𝐪;d𝑦L

− 1 =

d𝑁EOPQQ.
dE𝐩;d𝑦JdE𝐪;d𝑦L
d𝑁

dE𝐩;d𝑦J
d𝑁

dE𝐪;d𝑦L

where “p” and “q” are used to mark the two gluons. 

Observable:



10

Y.-Y. Zhao et al. / Nuclear Physics A 955 (2016) 88–100 95

Fig. 4. Two-gluon rapidity correlations for minimum bias samples of pp (red), AA (black) and pA (blue) collisions 
at 7 TeV. Where !φ = φq − φp = 0, and the solid, dash and dash-point lines are xq < 10−3, 10−3 < xq < 10−2

and xq > 10−2, respectively. p⊥ = q⊥ = 1.5 GeV for pp collisions, p⊥ = q⊥ = 2.5 GeV for AA collisions, and 
p⊥ = 1.5 GeV, and q⊥ = 2.5 for pA collisions. (a) yp = 0, φp = φq = 0, (b) yp = −3, φp = φq = 0, and (c) yp = 0, 
solid lines for δφ = 0, dash lines for δφ = π/8, and point lines for δφ = π/2, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

the larger saturated scale, the smaller coupling constant and weaker correlation. The gluon at 
the central rapidity region reflects the properties of the small-x (x < 10−3) degrees of freedom. 
Where the quantum evolutions are essential. In contrast, the gluon at middle rapidity region 
presents the features of moderate-x (10−3 < x < 10−2) degree of freedom. Where the quantum 
effects become weak, and the contributions of colour source fields have to be taken into account.

The gluon at larger-x (x > 10−2) is out of the regime of saturation. Where the quantum evolu-
tion can be neglected in the first approximation, and the colour source fields are described by the 
MV model with Gaussian weight function. For a complete show of the correlation structure in the 
whole rapidity range, we use a phenomenological extrapolation of the uGD in the regime [36], 
i.e.,

%A(B)(x,k⊥) =
(

1 − x

1 − x0

)β

%A(B)(x0,k⊥), (12)

where β is a parameter. We set β = 4 in our following calculations. The corresponding saturation 
scale and width of uGD are constants as showed by blue and red dash lines in Fig. 2(a) and 2(b), 
respectively. Certainly, the different extrapolation of the uGD, such as a recently suggested one, 
Eq. (8) in [45] will change the strength of the correlation, but it will not change the general trend 
of the correlation pattern in the region.

With above descriptions for gluon production in the full rapidity region, we present in Fig. 4
the two-gluon rapidity correlations as a function of the rapidity gap !y = yq − yp for minimum 
bias samples of pp (red), AA (black) and pA (blue) collisions at 7 TeV. Where the solid, dash 
and dash-point lines are used to label the results of the small, moderate and large-xq degree 
of freedom, respectively. The azimuthal angular is chosen at near side, i.e., φq = φp = 0, and 
!φ = φq −φp = 0, to have the maximum correlation strength [31–33]. We fix yp = 0 in Fig. 4(a) 
to keep the symmetry of the correlation, and yp = −3 in Fig. 4(b) as a contrast to the case of 
yp = 0. Transverse momentum of two gluon is chosen to make the correlation approximately 
maximum as demonstrated in the above section. They are p⊥ = q⊥ = 1.5 GeV for pp collisions, 
p⊥ = q⊥ = 2.5 GeV for AA collisions, and p⊥ = 1.5 GeV, q⊥ = 2.5 GeV for pA collisions, as 
indicated in the legend of the figure.

Fig. 4(a) shows that the correlation pattern in symmetric pp and AA collisions are also sym-
metry. At the central region, the correlations are almost flat as showed by red and black solid 
lines. Where the small-x (xp, xq < 10−3) degree of freedom is dominated. The radiated gluon 

(1) Physical Picture of Long Range Ridge Correlations

• Origin: strong correlations 
between source gluons and 
radiated gluons
• The same origin in pp and 

AA
• “W” shape

∆𝑦 = 𝑦L − 0
1

long range

𝐶QQ
𝐶QR

𝐶QS

𝑦J = 0

∆𝜙 = 0, p; = q;=1.5 GeV for pp

(r)
solid      (r)  𝐶QQ: platform, approx. boost invariance
dash      (m) 𝐶QR: ridge-like corr. appears
dot-dash(s)  𝐶QS: ridge-like corr. fully develop

V

𝑦J = 0
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Fig. 5. Two-gluon rapidity correlations for minimum bias samples of pp collisions. Where, !φ = φq − φp = 0, yp = 0. 
The solid, dash and dash-point lines are xq < 10−3, 10−3 < xq < 10−2 and xq > 10−2, respectively. (a) At √s = 7 TeV
with three sets of transverse momentum of trigger gluon, p⊥ = q⊥ = 0.8 GeV (red), p⊥ = q⊥ = 1.5 GeV (blue), and 
p⊥ = q⊥ = 2.5 GeV (black). (b) At √s = 0.2 TeV with three sets of transverse momentum of trigger gluon, p⊥ = q⊥ =
0.5 GeV (red), p⊥ = q⊥ = 1.5 GeV (blue), and p⊥ = q⊥ = 2.0 GeV (black). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

5.2. The independence of azimuthal angular

As we know, the strength of correlation is azimuthal angular, or δφ, dependent. The azimuthal 
collimation of two trigger gluon peaks the correlations in CGC EFT [31–33]. In above discussion, 
we keep the φp = φq = 0 and δφ = 0 to have the strongest correlation. To see if the ridge and 
bump-like features relate to the specified δφ = 0, we repeat the calculations of Fig. 4(a) for the 
cases of (i) φp = 0, φq = π/8, δφ = π/8, and (ii) φp = 0, φq = π/2, δφ = π/2, respectively. 
The results are presented in Fig. 4(c). Where, solid lines for δφ = 0, dash lines for δφ = π/8 and 
point lines for δφ = π/2, respectively.

It shows that the general trend of solid, dash and point lines are very similar to each others in 
pp, pA and AA collisions. Regardless of the strength of the correlation depends on their relative 
angular, those ridge and bump-like features are independent of the choice of azimuthal angular 
of two trigger gluon. Therefore, the ridge and bump-like long-range rapidity correlations in CGC 
EFT is not due to collimation of two trigger gluon.

5.3. The dependence of transverse momentum and incident energy

To see how the correlation pattern changes with transverse momentum of trigger gluon and 
incident energy, we present in Fig. 5 the two-gluon rapidity correlations as a function of the 
rapidity gap !y = yq − yp for three sets of transverse momentum for minimum bias samples 
of pp collisions at 

√
s = 7 TeV (a) and 

√
s = 0.2 TeV (b), where φp = φq = 0, and !φ =

φq − φp = 0 for both Fig. 5(a) and 5(b). The three sets of transverse momentum of trigger gluon 
are p⊥ = q⊥ = 0.8 GeV (red), p⊥ = q⊥ = 1.5 GeV (blue), and p⊥ = q⊥ = 2.5 GeV (black) for 
Fig. 5(a), and p⊥ = q⊥ = 0.5 GeV (red), p⊥ = q⊥ = 1.5 GeV (blue), and p⊥ = q⊥ = 2.0 GeV
(black) for Fig. 5(b), respectively.

Fig. 5(a) shows again that the highest correlation platform corresponds to p⊥ = q⊥ =
1.5 GeV, the solid blue line, as indicated in the last section. With the increase of transverse 
momentum of trigger gluon, the platform, i.e., the solid line, becomes short, and the position of 
the peak of the ridge moves toward the center, and the height of the ridge becomes lower and 
lower, as showed by black lines.

Those features are understandable. From Eq. (11), at given incident energy 
√

s, with increase 
of transverse momentum, the small-x (xq < 10−3) region becomes narrow. At the same con-

• Maximum corr. at p; = q;~𝑄YZ + 𝑄Y\ = 2𝑄YJ ≈
1.5	GeV

• At lower energy, no small x in the central rapidity 
region, no ridge

(2) Rapidity correlations and dependences on 𝑝" and 𝑠$$)
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• Finer binning in p;
• Dependences on specific 𝑦,  not ∆𝑦

𝐶 ∆𝜙 = `𝑑𝜙J`𝑑𝜙L 𝛿(𝜙L − 𝜙J − ∆𝜙)𝐶 𝐩;,𝑦J, 𝐪;, 𝑦L

pp@ 𝑠 = 7TeV

(3) Fine structures of azimuthal correlations

To explore the contributions of different x degrees of 
freedom 
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Figs. 2(a), 2(b), and 2(c), a bump appears at Δϕ ¼ π/2
when yp ¼ 0, and it disappears at yp ¼ 1 and 2, which
indicates that azimuthal correlations at short-range rapidity
vary with the rapidity location of the chosen gluon. The
azimuthal correlations at long-range rapidity also vary
according to the rapidity location of the chosen gluon,
as can be seen from the red curves in Figs. 2(a), 2(b), and
2(c). It suggests that azimuthal correlations at the same
rapidity gap change with the rapidity location of the
chosen gluon.
To obtain the azimuthal correlations at different rapidity

locations in detail, we calculate the correlations between
two gluons both at small rapidity, e.g., yp ¼ 0, yq ¼ 0
shown in Fig. 3(a); two gluons both at large rapidity, e.g.,
yp ¼ 3, yq ¼ 3 shown in Fig. 3(c); and one gluon at small
rapidity and the other at large rapidity, e.g., yp ¼ 0, yq ¼ 3
shown in Fig. 3(b). Since azimuthal correlations are p⊥
sensitive, an integration over p⊥ may smear some corre-
lation structure. Five values of p⊥ are tried in the following
calculations, i.e., p⊥ ¼ 1.0, 1.5, 1.8, 2.0, 2.5 GeV/c. For
simplicity, q⊥ is chosen to be equal to p⊥ at first.
Correlation patterns are more diverse at single p⊥. In

Fig. 3(a), the correlation at p⊥ ¼ 1.0 GeV/c shows a valley
at Δϕ ¼ π/2. As p⊥ increases to 1.5 GeV/c, a moderate
bump at Δϕ ¼ π/2 begins to appear and strengthens at
p⊥ ¼ 1.8 GeV/c. As p⊥ increases further to 2.0 GeV/c, the
correlation at Δϕ ¼ π/2 drops to a flat structure and finally
returns to a valley at a larger p⊥ of 2.5 GeV/c. In Fig. 3(b),
the curves for p⊥ ¼ 1.0 and 2.5 GeV/c are similar to those
in (a) and are hence not shown in order to make the fine
structures of other curves visible. The correlation patterns at
p⊥ ¼ 1.5 GeV/c are similar to those in Fig. 3(a), while for
p⊥ ¼ 1.8 GeV/c, two bumps appear on the two sides of
Δϕ ¼ π/2, approximately at Δϕ ≈ 1.0 and Δϕ ≈ 2.0.
Compared with the flat structure of p⊥ ¼ 2.0 GeV/c in
Fig. 3(a), a valley appears in Fig. 3(b), with two shoulders on
the two sides of Δϕ ¼ π/2. It is worth noticing that the
positions of the two shoulders are almost the same as those of
the two bumps of p⊥ ¼ 1.8 GeV/c. However, all the bumps
and flat structure existing in Figs. 3(a) and 3(b), which we

call fine structures in the following, nearly disappear in
Fig. 3(c), with only slight shoulders on the two sides of
Δϕ ¼ π/2 at p⊥ ¼ 1.8 GeV/c and 2.0 GeV/c.
The above-mentioned phenomenon that azimuthal cor-

relations at the same rapidity gap change with the rapidity
location of the chosen gluon is more obvious in Figs. 3(a)
and 3(c), in which the rapidity gap is the same, i.e.,Δy ¼ 0.
By comparing the red curves in Figs. 3(a) and 3(c), we can
see that the bump at Δϕ ¼ π/2 only exists in the small
rapidity location. Furthermore, the bumps (one or two)
around Δϕ ¼ π/2 only exist in Figs. 3(a) and 3(b), which
further indicates that these fine structures require at least one
gluon located at small rapidity. Not only that, but correla-
tions calculated at singlep⊥ rather than integration in awide
p⊥ range help to obtain these patterns. Single p⊥ at 1.5, 1.8,
and 2.0 GeV/c, i.e., a value near p⊥ ∼ 2Qsp ¼ 1.8 GeV/c,
are most likely to show fine structures betweenΔϕ ¼ 0 and
π. This means that azimuthal correlations have a sensitive
range in transversemomentum, a rough interval between 1.5
and 2.0 GeV/c, which is associated with the saturation
momentum of colliding particles.
In fact, the single bump at Δϕ ¼ π/2 and the double

bumps or shoulders at Δϕ ≈ 1.0 and Δϕ ≈ 2.0 represent
two harmonic components in the azimuthal correlations.
The single bump at Δϕ ¼ π/2 represents a component of
cosð4ΔϕÞwith its local maximum atΔϕ ¼ π/2. The double
bumps or shoulders represent a component of cosð6ΔϕÞ
with its local maximum at Δϕ ¼ π/3 ≈ 1.0 and
Δϕ ¼ 2π/3 ≈ 2.0. The difference between double bumps
and double shoulders lies in the large and small values of
the coefficients of the sixth-order harmonic component. In
the same way, the main peaks at Δϕ ¼ 0 and Δϕ ¼ π
represent a dominant component of cosð2ΔϕÞ. If a Fourier
expansion is applied to the azimuthal correlation function
CðΔϕÞ, it is natural to get the second-order, fourth-order,
and sixth-order harmonic coefficients. High-order har-
monic components only get prominent when at least one
gluon is located at small rapidity and has transverse
momentum near two times the saturation momentum of
the colliding proton, i.e., 2Qsp ¼ 1.8 GeV/c.

FIG. 3. Azimuthal correlation at five values of p⊥ with p⊥ ¼ q⊥ at (a) yp ¼ 0, yq ¼ 0; (b) yp ¼ 0, yq ¼ 3; and (c) yp ¼ 3, yq ¼ 3.
In (b), the curves for p⊥ ¼ 1.0 and 2.5 GeV/c are similar to those in (a) and not shown in order to make the fine structure of other
curves visible.
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• p;=1.0 GeV: a valley
• p;=1.5 GeV: a single bump
• p;=1.8 GeV: a single bump
• p;=2.0 GeV: flat
• p;=2.5 GeV: a valley 

Fine Structures around ∆𝜙 = 𝜋/2

Figs. 2(a), 2(b), and 2(c), a bump appears at Δϕ ¼ π/2
when yp ¼ 0, and it disappears at yp ¼ 1 and 2, which
indicates that azimuthal correlations at short-range rapidity
vary with the rapidity location of the chosen gluon. The
azimuthal correlations at long-range rapidity also vary
according to the rapidity location of the chosen gluon,
as can be seen from the red curves in Figs. 2(a), 2(b), and
2(c). It suggests that azimuthal correlations at the same
rapidity gap change with the rapidity location of the
chosen gluon.
To obtain the azimuthal correlations at different rapidity

locations in detail, we calculate the correlations between
two gluons both at small rapidity, e.g., yp ¼ 0, yq ¼ 0
shown in Fig. 3(a); two gluons both at large rapidity, e.g.,
yp ¼ 3, yq ¼ 3 shown in Fig. 3(c); and one gluon at small
rapidity and the other at large rapidity, e.g., yp ¼ 0, yq ¼ 3
shown in Fig. 3(b). Since azimuthal correlations are p⊥
sensitive, an integration over p⊥ may smear some corre-
lation structure. Five values of p⊥ are tried in the following
calculations, i.e., p⊥ ¼ 1.0, 1.5, 1.8, 2.0, 2.5 GeV/c. For
simplicity, q⊥ is chosen to be equal to p⊥ at first.
Correlation patterns are more diverse at single p⊥. In

Fig. 3(a), the correlation at p⊥ ¼ 1.0 GeV/c shows a valley
at Δϕ ¼ π/2. As p⊥ increases to 1.5 GeV/c, a moderate
bump at Δϕ ¼ π/2 begins to appear and strengthens at
p⊥ ¼ 1.8 GeV/c. As p⊥ increases further to 2.0 GeV/c, the
correlation at Δϕ ¼ π/2 drops to a flat structure and finally
returns to a valley at a larger p⊥ of 2.5 GeV/c. In Fig. 3(b),
the curves for p⊥ ¼ 1.0 and 2.5 GeV/c are similar to those
in (a) and are hence not shown in order to make the fine
structures of other curves visible. The correlation patterns at
p⊥ ¼ 1.5 GeV/c are similar to those in Fig. 3(a), while for
p⊥ ¼ 1.8 GeV/c, two bumps appear on the two sides of
Δϕ ¼ π/2, approximately at Δϕ ≈ 1.0 and Δϕ ≈ 2.0.
Compared with the flat structure of p⊥ ¼ 2.0 GeV/c in
Fig. 3(a), a valley appears in Fig. 3(b), with two shoulders on
the two sides of Δϕ ¼ π/2. It is worth noticing that the
positions of the two shoulders are almost the same as those of
the two bumps of p⊥ ¼ 1.8 GeV/c. However, all the bumps
and flat structure existing in Figs. 3(a) and 3(b), which we

call fine structures in the following, nearly disappear in
Fig. 3(c), with only slight shoulders on the two sides of
Δϕ ¼ π/2 at p⊥ ¼ 1.8 GeV/c and 2.0 GeV/c.
The above-mentioned phenomenon that azimuthal cor-

relations at the same rapidity gap change with the rapidity
location of the chosen gluon is more obvious in Figs. 3(a)
and 3(c), in which the rapidity gap is the same, i.e.,Δy ¼ 0.
By comparing the red curves in Figs. 3(a) and 3(c), we can
see that the bump at Δϕ ¼ π/2 only exists in the small
rapidity location. Furthermore, the bumps (one or two)
around Δϕ ¼ π/2 only exist in Figs. 3(a) and 3(b), which
further indicates that these fine structures require at least one
gluon located at small rapidity. Not only that, but correla-
tions calculated at singlep⊥ rather than integration in awide
p⊥ range help to obtain these patterns. Single p⊥ at 1.5, 1.8,
and 2.0 GeV/c, i.e., a value near p⊥ ∼ 2Qsp ¼ 1.8 GeV/c,
are most likely to show fine structures betweenΔϕ ¼ 0 and
π. This means that azimuthal correlations have a sensitive
range in transversemomentum, a rough interval between 1.5
and 2.0 GeV/c, which is associated with the saturation
momentum of colliding particles.
In fact, the single bump at Δϕ ¼ π/2 and the double

bumps or shoulders at Δϕ ≈ 1.0 and Δϕ ≈ 2.0 represent
two harmonic components in the azimuthal correlations.
The single bump at Δϕ ¼ π/2 represents a component of
cosð4ΔϕÞwith its local maximum atΔϕ ¼ π/2. The double
bumps or shoulders represent a component of cosð6ΔϕÞ
with its local maximum at Δϕ ¼ π/3 ≈ 1.0 and
Δϕ ¼ 2π/3 ≈ 2.0. The difference between double bumps
and double shoulders lies in the large and small values of
the coefficients of the sixth-order harmonic component. In
the same way, the main peaks at Δϕ ¼ 0 and Δϕ ¼ π
represent a dominant component of cosð2ΔϕÞ. If a Fourier
expansion is applied to the azimuthal correlation function
CðΔϕÞ, it is natural to get the second-order, fourth-order,
and sixth-order harmonic coefficients. High-order har-
monic components only get prominent when at least one
gluon is located at small rapidity and has transverse
momentum near two times the saturation momentum of
the colliding proton, i.e., 2Qsp ¼ 1.8 GeV/c.

FIG. 3. Azimuthal correlation at five values of p⊥ with p⊥ ¼ q⊥ at (a) yp ¼ 0, yq ¼ 0; (b) yp ¼ 0, yq ¼ 3; and (c) yp ¼ 3, yq ¼ 3.
In (b), the curves for p⊥ ¼ 1.0 and 2.5 GeV/c are similar to those in (a) and not shown in order to make the fine structure of other
curves visible.
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𝑦J = 0, 𝑦L = 3𝑦J = 0, 𝑦L = 0

• p;=1.5 GeV: a single bump at 
∆𝜙 = 𝜋/2

• p;=1.8 GeV: double bumps at 
∆𝜙 ≈ 1, 2

• p;=2.0 GeV: double shoulders
at ∆𝜙 ≈ 1, 2

Fine structures is related to harmonic components of cos 𝑛∆𝜙.
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• Finer binning in p; (integration over p; will 
smear it) 

• Near p;~2𝑄YJ = 1.8	GeV, associated with the 
saturation momentum of colliding particles 

• At least one gluon located at small rapidity, 
specific to small-x region

Fine structures in azimuthal corr. show up when:
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(4) Two dimensional ∆𝑦-∆𝜑 correlations

D. Zhang, Y. Zhao, M. Xu et al. Nuclear Physics A 1011 (2021) 122201

dNcorr
2

d2p⊥dypd2q⊥dyq

= C2

p2
⊥q2

⊥

⎡

⎣
ˆ

d2k⊥
(2π)2 (D1 + D2) +

∑

j=±

[
D3(p⊥, jq⊥) + 1

2
D4(p⊥, jq⊥)

]⎤

⎦ , (4)

where C2 = αs (p⊥)αs(q⊥)N2
cS⊥

π8(N2
c −1)3 , and

D1 = #2
A1

(yp,k⊥)#A2(yp,p⊥ − k⊥)
[
#A2(yq,q⊥ + k⊥) + #A2(yq,q⊥ − k⊥)

]
,

D2 = #2
A2

(yq,k⊥)#A1(yp,p⊥ − k⊥)[#A1(yq,q⊥ + k⊥) + #A1(yq,q⊥ − k⊥)]. (5)

Here, #A1(2) (y, k⊥) denotes the uGD of projectile A1 or target A2. In Eq. (4),

D3(p⊥, jq⊥) = δ2(p⊥ + jq⊥)
[
I2

1 + I2
2 + 2I2

3

]
, (6)

with

I1 =
ˆ

d2k1⊥
(2π)2 #A1(yp,k1⊥)#A2(yq,p⊥ − k1⊥)

(k1⊥ · p⊥ − k2
1⊥)2

k2
1⊥(p⊥ − k1⊥)2

, (7)

I2 =
ˆ

d2k1⊥
(2π)2 #A1(yp,k1⊥)#A2(yq,p⊥ − k1⊥)

|k1⊥ × p⊥|2
k2

1⊥(p⊥ − k1⊥)2
, (8)

I3 =
ˆ

d2k1⊥
(2π)2 #A1(yp,k1⊥)#A2(yq,p⊥ − k1⊥)

(k1⊥ · p⊥ − k2
1⊥)|k1⊥ × p⊥|

k2
1⊥(p⊥ − k1⊥)2

, (9)

and

D4(p⊥, jq⊥) =
ˆ

d2k1⊥
(2π)2 #A1(yp,k1⊥)#A1(yp,k2⊥)#A2(yq,p⊥ − k1⊥)

× #A2(yq,p⊥ − k2⊥)

× (k1⊥ · p⊥ − k2
1⊥)(k2⊥ · p⊥ − k2

2⊥) + (k1⊥ × p⊥) · (k2⊥ × p⊥)

k2
1⊥(p⊥ − k1⊥)2

× (k1⊥ · jq⊥ − k2
1⊥)(k2⊥ · jq⊥ − k2

2⊥) + (k1⊥ × q⊥) · (k2⊥ × q⊥)

k2
2⊥(jq⊥ − k1⊥)2

, (10)

where k2⊥ ≡ p⊥ − k1⊥ + jq⊥.
The single-gluon inclusive production reads

dN1

d2p⊥dyp

= αs(p⊥)NcS⊥
π4(N2

c − 1)

1

p2
⊥

ˆ
dk2

⊥
(2π)2 #A(yp,k⊥)#A(yp,p⊥ − k⊥).

(11)

Based on correlation function C(p⊥, yp; q⊥, yq), the associated yield per trigger is defined as

Y(%φ,%y) = 1
NTrig

d2NAssoc

d%φd%y
, (12)

5

• Per-trigger yield
D. Zhang, Y. Zhao, M. Xu et al. Nuclear Physics A 1011 (2021) 122201

Fig. 4. (a) The !φ distribution at a fixed long range rapidity gap. (b) The !φ distribution with a constant background 
subtracted by the ZYAM method.

Fig. 5. The differential correlation function at p⊥ = q⊥ = 2.0 GeV/c with φp = φq = 0. Black, blue and red curves 
denote yp = 0, 2 and 3.5, respectively.

According to the zero-yield-at-minimum (ZYAM) method [39], the integrated associated yield 
is defined as the area under the peak of the !φ distribution above a constant background. The !φ

distribution with a constant background subtracted by the ZYAM method is shown in Fig. 4(b). 
ZYAM subtraction scheme makes the signals cleaner. The biggest amplitude is the red curve, 
corresponding to the widest rapidity window. The observable Y(!φ) increases drastically with 
rapidity window YW.

The enhancement of Y quantity at wider rapidity window, demonstrated in Fig. 4(b), indicates 
that large x gluons, i.e. source gluons, make significant contributions to the ridge yield. It is 
known that boost invariance also contributes to the ridge yield. Which contribution is the main 
reason will be clarified in more detail after the differential correlation is discussed.

Enlarging the rapidity window is one way of seeing the contributions of source gluons. Obvi-
ously, the integration over a given rapidity window includes different combinations of gluons. In 
order to further clarify the contributions of source gluons, a more direct observable is the differ-
ential correlation function C(p⊥, yp; q⊥, yq), i.e. Eq. (2) with specific yp and yq, which is shown 
in Fig. 5.

8

• 𝑌m 	↑, 𝑌 ∆𝜙 	↑
contribution of source 
gluons
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with y representing rapidity, p⊥ transverse momentum andffiffiffi
s

p
center-of-mass energy. At

ffiffiffi
s

p
¼ 7 TeV and intermedi-

ate p⊥, e.g. 2 GeV=c, gluons with y≳ 3.5 has x > 0.01.
They are called source gluons. Gluons with y≲ 1.0 has
x < 0.001, which are descendants of source gluons and are
called radiated gluons. In the central rapidity region, the
small x part of a colliding hadron is probed, while in the
large rapidity region the large x part is probed. A proton is
seen as three valence quarks at large x and dense gluons at
small x. Therefore the physics in different rapidity regions
is essentially different. Correlations of gluons of different
rapidity regions can reflect correlations of different gen-
erations [43–46].
The experimental observable of ridge is per-trigger yield

[2–4,6–8,11,13–15], i.e. the number of particle pairs with
pseudorapidity interval Δη and azimuth interval Δϕ di-
vided by the number of trigger particles. In order to
eliminate the influence of unrelated pairs, mixed events
are usually constructed in experiments. Dividing the yield
in real events by the yield in mixed events gives the final
results reported in experiments.
In the CGC calculation, we propose that the number of

uncorrelated pairs can be exactly represented by the integral
of the product of two real single-particle distributions
within the acceptance, instead of the approximate normali-
zation factor, which is given by simply assuming a boost
invariant rapidity distribution [25]. As we know, the boost
invariance of the rapidity distribution holds only at the
central rapidity region [41], but is violated beyond that
region. The violation of boost invariance should influence
correlations accordingly. Indeed, after this correction, the
ridge correlations at long-range rapidity are well shown.
The correlation rebound in p-p collisions at 7 TeV is
reproduced and described by the CGC.
It is also found that the correlation rebound is most

obvious around the sum of the saturation momentum of
the projectile and target. The rebound happens at even
larger rapidity region for higher colliding energies. These
features of the correlation rebound are closely related to the
mechanism of CGC.
This paper is organized as follows. In Sec. II we

formulate an exact calculation of the normalization factor
of ridge correlations based on real rapidity distributions
of CGC. Results of corrected correlations are presented.
In Sec. III the dependence of the correlation rebound
on p⊥ and

ffiffiffi
s
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is systematically studied and the origin is

discussed. Section IV is a summary.

II. LONG-RANGE RIDGE CORRELATIONS
FROM CGC

The per-trigger yield is defined as
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d2Npair

dΔydΔϕ
: ð2Þ

It counts the number of particle pairs with rapidity
separation Δy and azimuthal angle separation Δϕ, divided
by the number of trigger particles.
In experiments, the number of uncorrelated pairs is

estimated by the sample of mixed events. Particles of a
mixed event are drawn randomly from different original
events. For a large enough number of original events, in a
single mixed event, the probability of having two particles
from the same original event is close to zero. The particles
in a mixed event are almost independent [47].
The per-trigger yield obtained from the original events

and the mixed events are denoted as

SðΔy;ΔϕÞ ¼ 1
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; ð3Þ
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respectively. The functions SðΔy;ΔϕÞ and BðΔy;ΔϕÞ are
called the signal and background distributions, respectively.
The final yield is normalized as [2–4,6–8,11,13–15]

YðΔy;ΔϕÞ ¼ Bð0; 0Þ SðΔy;ΔϕÞ
BðΔy;ΔϕÞ
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Detector effects, such as tracking inefficiency, largely
cancel in the same-event to mixed-event ratio. The factor
Bð0; 0Þ is the value of BðΔy;ΔϕÞ at Δy ¼ 0 and Δϕ ¼ 0,
representing the mixed-event associated yield for both
particles of the pair going in the same direction. In this
case, the two particles have the maximum pair acceptance
and the normalization factor BðΔy;ΔϕÞ=Bð0; 0Þ equals one.
The signal distribution of the per-trigger yield in CGC is

expressed [23–25] as
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The labels “p” and “q” denote the two particles in the pair,
conventionally referred to as “trigger” and “associated”
particles, respectively. The δ function is used to restrict
the phase space interval to a given Δy and Δϕ. The
integrand function dNcorr

2

d2p⊥dypd2q⊥dyq
is equal to the two-particle
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central rapidity region [41], but is violated beyond that
region. The violation of boost invariance should influence
correlations accordingly. Indeed, after this correction, the
ridge correlations at long-range rapidity are well shown.
The correlation rebound in p-p collisions at 7 TeV is
reproduced and described by the CGC.
It is also found that the correlation rebound is most

obvious around the sum of the saturation momentum of
the projectile and target. The rebound happens at even
larger rapidity region for higher colliding energies. These
features of the correlation rebound are closely related to the
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This paper is organized as follows. In Sec. II we

formulate an exact calculation of the normalization factor
of ridge correlations based on real rapidity distributions
of CGC. Results of corrected correlations are presented.
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events. For a large enough number of original events, in a
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respectively. The functions SðΔy;ΔϕÞ and BðΔy;ΔϕÞ are
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Detector effects, such as tracking inefficiency, largely
cancel in the same-event to mixed-event ratio. The factor
Bð0; 0Þ is the value of BðΔy;ΔϕÞ at Δy ¼ 0 and Δϕ ¼ 0,
representing the mixed-event associated yield for both
particles of the pair going in the same direction. In this
case, the two particles have the maximum pair acceptance
and the normalization factor BðΔy;ΔϕÞ=Bð0; 0Þ equals one.
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are usually constructed in experiments. Dividing the yield
in real events by the yield in mixed events gives the final
results reported in experiments.
In the CGC calculation, we propose that the number of

uncorrelated pairs can be exactly represented by the integral
of the product of two real single-particle distributions
within the acceptance, instead of the approximate normali-
zation factor, which is given by simply assuming a boost
invariant rapidity distribution [25]. As we know, the boost
invariance of the rapidity distribution holds only at the
central rapidity region [41], but is violated beyond that
region. The violation of boost invariance should influence
correlations accordingly. Indeed, after this correction, the
ridge correlations at long-range rapidity are well shown.
The correlation rebound in p-p collisions at 7 TeV is
reproduced and described by the CGC.
It is also found that the correlation rebound is most

obvious around the sum of the saturation momentum of
the projectile and target. The rebound happens at even
larger rapidity region for higher colliding energies. These
features of the correlation rebound are closely related to the
mechanism of CGC.
This paper is organized as follows. In Sec. II we

formulate an exact calculation of the normalization factor
of ridge correlations based on real rapidity distributions
of CGC. Results of corrected correlations are presented.
In Sec. III the dependence of the correlation rebound
on p⊥ and
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is systematically studied and the origin is

discussed. Section IV is a summary.
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It counts the number of particle pairs with rapidity
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by the number of trigger particles.
In experiments, the number of uncorrelated pairs is

estimated by the sample of mixed events. Particles of a
mixed event are drawn randomly from different original
events. For a large enough number of original events, in a
single mixed event, the probability of having two particles
from the same original event is close to zero. The particles
in a mixed event are almost independent [47].
The per-trigger yield obtained from the original events

and the mixed events are denoted as
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d2Nsame
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respectively. The functions SðΔy;ΔϕÞ and BðΔy;ΔϕÞ are
called the signal and background distributions, respectively.
The final yield is normalized as [2–4,6–8,11,13–15]

YðΔy;ΔϕÞ ¼ Bð0; 0Þ SðΔy;ΔϕÞ
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Detector effects, such as tracking inefficiency, largely
cancel in the same-event to mixed-event ratio. The factor
Bð0; 0Þ is the value of BðΔy;ΔϕÞ at Δy ¼ 0 and Δϕ ¼ 0,
representing the mixed-event associated yield for both
particles of the pair going in the same direction. In this
case, the two particles have the maximum pair acceptance
and the normalization factor BðΔy;ΔϕÞ=Bð0; 0Þ equals one.
The signal distribution of the per-trigger yield in CGC is

expressed [23–25] as
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conventionally referred to as “trigger” and “associated”
particles, respectively. The δ function is used to restrict
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eliminate the influence of unrelated pairs, mixed events
are usually constructed in experiments. Dividing the yield
in real events by the yield in mixed events gives the final
results reported in experiments.
In the CGC calculation, we propose that the number of

uncorrelated pairs can be exactly represented by the integral
of the product of two real single-particle distributions
within the acceptance, instead of the approximate normali-
zation factor, which is given by simply assuming a boost
invariant rapidity distribution [25]. As we know, the boost
invariance of the rapidity distribution holds only at the
central rapidity region [41], but is violated beyond that
region. The violation of boost invariance should influence
correlations accordingly. Indeed, after this correction, the
ridge correlations at long-range rapidity are well shown.
The correlation rebound in p-p collisions at 7 TeV is
reproduced and described by the CGC.
It is also found that the correlation rebound is most

obvious around the sum of the saturation momentum of
the projectile and target. The rebound happens at even
larger rapidity region for higher colliding energies. These
features of the correlation rebound are closely related to the
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This paper is organized as follows. In Sec. II we

formulate an exact calculation of the normalization factor
of ridge correlations based on real rapidity distributions
of CGC. Results of corrected correlations are presented.
In Sec. III the dependence of the correlation rebound
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discussed. Section IV is a summary.
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It counts the number of particle pairs with rapidity
separation Δy and azimuthal angle separation Δϕ, divided
by the number of trigger particles.
In experiments, the number of uncorrelated pairs is

estimated by the sample of mixed events. Particles of a
mixed event are drawn randomly from different original
events. For a large enough number of original events, in a
single mixed event, the probability of having two particles
from the same original event is close to zero. The particles
in a mixed event are almost independent [47].
The per-trigger yield obtained from the original events

and the mixed events are denoted as
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respectively. The functions SðΔy;ΔϕÞ and BðΔy;ΔϕÞ are
called the signal and background distributions, respectively.
The final yield is normalized as [2–4,6–8,11,13–15]

YðΔy;ΔϕÞ ¼ Bð0; 0Þ SðΔy;ΔϕÞ
BðΔy;ΔϕÞ

: ð5Þ

Detector effects, such as tracking inefficiency, largely
cancel in the same-event to mixed-event ratio. The factor
Bð0; 0Þ is the value of BðΔy;ΔϕÞ at Δy ¼ 0 and Δϕ ¼ 0,
representing the mixed-event associated yield for both
particles of the pair going in the same direction. In this
case, the two particles have the maximum pair acceptance
and the normalization factor BðΔy;ΔϕÞ=Bð0; 0Þ equals one.
The signal distribution of the per-trigger yield in CGC is

expressed [23–25] as
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The labels “p” and “q” denote the two particles in the pair,
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particles, respectively. The δ function is used to restrict
the phase space interval to a given Δy and Δϕ. The
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• Approximate normalization factor
assuming a boost invariant rapidity distribution

• Correct normalization scheme
use real single-gluon distribution

K. Dusling, R. Venugopalan, Phys. Rev. D 87 (2013) 094034. 

production minus the product of two single-particle pro-
ductions, i.e.

dNcorr
2

d2p⊥dypd2q⊥dyq
¼ dN2

d2p⊥dypd2q⊥dyq
−

dN1

d2p⊥dyp

dN1

d2q⊥dyq
:

ð8Þ

The background in Eq. (4) represents yield of uncorre-
lated pairs. The counterpart in theoretical calculations
should be integrals of the product of two single-particle
productions, i.e.

BðΔy;ΔϕÞ ¼ 1

NTrig

d2Nuncorr

dΔydΔϕ
; ð9Þ

with

d2Nuncorr
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×
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0
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0
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×
Z
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⊥
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⊥

dp2
⊥

2

Z
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⊥

qmin
⊥

dq2⊥
2

dN1

d2p⊥dyp

dN1

d2q⊥dyq
:

ð10Þ

The integration in Eq. (10) depends on the shape of the
single-particle distribution and the acceptance. The CMS,
ALICE and ATLAS experiments at the LHC have a full
azimuthal coverage but a limited rapidity acceptance. When
the single-particle azimuthal distribution is uniform and the
integral range is 0 to 2π, the background distribution does
not depend on Δϕ.
On contrary, the background distribution depends on Δy

due to the limited rapidity acceptance. When the rapidity
distribution is boost invariant, the normalization factor is

BðΔy;ΔϕÞ
Bð0; 0Þ

¼ 1 −
jΔyj

ymax − ymin ; ð11Þ

i.e. Eq. (A.4) in Ref. [25].
As we know, boost invariance of glasma fields only

holds approximately within small x region in the CGC
framework. It is interesting to see how an exact calculation
of the normalization factor affects the correlations. In the
following, the background based on boost invariance, i.e.
Eq. (11), is denoted by B1. The background based on real
single-particle distributions within the CGC is denoted
by B2. The signal distribution S normalized by B1, B2

results in Y1 and Y2, respectively.
The quantum evolution with rapidity is described by the

rcBK equation [48–50]. By solving the rcBK equation at a
given initial condition, the unintegrated gluon distribution
(uGD) can be obtained and the two- and single-gluon
productions are available. More specifically, the leading

order (LO) BK equation with a running coupling kernel,
the Balitsky’s prescription, is employed. Meanwhile, the
Albacete–Armesto–Milhano–Quiroqa–Salgado (AAMQS)
initial condition with the proton’s initial saturation scale
Q2

s0 ¼ 0.168 GeV2 is used. These specifications have
successfully described F2 vs. x [51], single-inclusive pt
spectra [52] and other experimental data [23–25].
To avoid repetition, the formulas of the double-gluon

production and sing-gluon production presented in
Refs. [23–25,43–45] are not shown here. Completing the
integrals in Eqs. (7) and (10) with the transverse momen-
tum range 1 ≤ p⊥ðq⊥Þ ≤ 3 GeV=c and the rapidity range
−0.9 ≤ ypðyqÞ ≤ 0.9 and −2.4 ≤ ypðyqÞ ≤ 2.4, Y1 and Y2

are obtained and shown in Fig. 1. The purpose of using two
different rapidity windows are to distinguish the contribu-
tions of different x components. Yw in the figure is short
for rapidity window.
As Figs. 1(a) and 1(b) show, at the rapidity window of

½−0.9; 0.9% (the ALICE acceptance), Y1 and Y2 have similar
structures. In the Δϕ direction, they both have two peaks of
equal height at Δϕ ¼ 0 and π. The two peaks are called
azimuthal collimation which is intrinsic to glasma dynamics
[23–25]. It contributes to the well-known collectivity in
small systems. In the Δy direction, Y1 and Y2 both show a
downward trend as jΔyj increases. It was stated that glasma
graphs have significant short range rapidity correlations [46].
Due to the short range rapidity correlations, the longitudinal
structure of the two-dimensional distributions is not as flat as
the ALICE data [8], so at the rapidity window of ½−0.9; 0.9%
the results of two-dimensional distributions from CGC are
not directly comparable with data.
Since boost invariance holds approximately within small

x region in the CGC framework, it is understandable that
two normalization schemes have few differences within the
central rapidity region.
At the rapidity window of ½−2.4; 2.4% (the CMS accep-

tance), Y1 and Y2 are shown in Figs. 1(c) and 1(d),
respectively. In Fig. 1(c) correlations at long-range rapidity
(jΔyj≳ 2) show bumps at Δϕ ¼ 0 and π which contribute
to the ridge yield. Integrating the two-dimensional distri-
bution within 2 < jΔyj < 4 produces the ridge yield as a
function of Δϕ, i.e. dN

dΔϕ, which has been shown to be
consistent with the CMS data [23–25].
Of particular interest in this study is the ridge yield as a

function of Δy, which has not been demonstrated within
the CGC framework [23–25]. The near-side yields as a
function of Δη from the CMS data present a rebound at
jΔηj ≈ 4 after a plateau within 2 < jΔηj < 3.6 (see Fig. 2 in
Ref. [2]). By using the background B1, the ridge yield as a
function of Δy, as Fig. 1(c) shows, does not agree with the
data; i.e. the plateau and the rebound in the rapidity
direction are not reproduced.
However, the trend of Y2 is qualitatively different from

Y1, as Fig. 1(d) shows. The difference is mainly in the
rapidity direction. Correlations in Fig. 1(c) decrease with
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jΔyj monotonously. Correlations in Fig. 1(d) first fall and
then rise with jΔyj, indicating a clearer signal of long-range
rapidity correlations. The structure within 2 < jΔyj < 4.4
is qualitatively consistent with the CMS data [2].
In order to compare Y1 and Y2 more clearly, a projection

to Δy axis is made and shown in Figs. 2(a) and 2(b).
In Fig. 2(a), at the rapidity window of ½−0.9; 0.9", the
red curve (representing Y2) is almost coincident with the
black curve (representing Y1), only having visible
differences at jΔyj > 1. This means that the two back-
grounds are approximately equal and the Y quantity is also
approximately equal when the rapidity window is within

the central rapidity region. This is because the boost
invariance holds approximately in the central rapidity
region, and Y2 almost reduces to Y1.
As the rapidity window increases to ½−2.4; 2.4", the red

curve in Fig. 2(b) deviates the black curve significantly
at long-range rapidity of jΔyj > 2. The plateau and the
rebound in the rapidity direction in CMS data [2] are
reproduced by the red curve in Fig. 2(b).
The trend of Y1 as a function of Δy does not show

any rebound at all and thus does not match well with data.
Y2 (the red curve) demonstrates a correlation rebound at
long-range rapidity of jΔyj ≈ 4. This may be the first time

FIG. 1. The per-trigger yield in the Δy-Δϕ plane for 7 TeV pp collisions with transverse momentum integrated within 1 ≤ p⊥ðq⊥Þ ≤
3 GeV=c and with rapidity integrated in −0.9 ≤ ypðyqÞ ≤ 0.9 (the upper panels) and −2.4 ≤ ypðyqÞ ≤ 2.4 (the lower panels). The two
columns present quantities Y1 and Y2, respectively.

FIG. 2. The per-trigger yield as a function of Δy at fixed Δϕ ¼ 0 for the rapidity windows of ½−0.9; 0.9" (a) and ½−2.4; 2.4" (b). The
black and the red curves are Y1 and Y2, respectively. (c) The difference of B1 and B2 at the rapidity window of ½−2.4; 2.4".
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• the plateau at 2 < ∆𝑦 ≲ 3.6
• the rebound at ∆𝑦 ≈ 4

CorrectedDusling

jΔyj monotonously. Correlations in Fig. 1(d) first fall and
then rise with jΔyj, indicating a clearer signal of long-range
rapidity correlations. The structure within 2 < jΔyj < 4.4
is qualitatively consistent with the CMS data [2].
In order to compare Y1 and Y2 more clearly, a projection

to Δy axis is made and shown in Figs. 2(a) and 2(b).
In Fig. 2(a), at the rapidity window of ½−0.9; 0.9", the
red curve (representing Y2) is almost coincident with the
black curve (representing Y1), only having visible
differences at jΔyj > 1. This means that the two back-
grounds are approximately equal and the Y quantity is also
approximately equal when the rapidity window is within

the central rapidity region. This is because the boost
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region, and Y2 almost reduces to Y1.
As the rapidity window increases to ½−2.4; 2.4", the red

curve in Fig. 2(b) deviates the black curve significantly
at long-range rapidity of jΔyj > 2. The plateau and the
rebound in the rapidity direction in CMS data [2] are
reproduced by the red curve in Fig. 2(b).
The trend of Y1 as a function of Δy does not show
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is reproduced and 
described by CGC
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there is a rebound in the rapidity correlations is the main
difference between the two energies.
In order to study the transverse momentum dependence,

the transverse momentum interval ½1; 3" GeV=c is divided
into two intervals, i.e. ½1; 2" GeV=c and ½2; 3" GeV=c. The
rapidity correlations within ½1; 2" GeV=c (dashed lines)
completely reproduce the trend of the solid lines. The
rebound of the red solid curve at jΔyj ≈ 4.0 is dominated
by the transverse momentum interval ½1; 2" GeV=c. The
correlations at p⊥ ∈ ½2; 3" GeV=c (the dot-dashed line) do
not show any rebound trends. It indicates that the rebound of
rapidity correlations at jΔyj ≈ 4.0 is most obvious at p⊥∼
QsA þQsB ¼ 2Qsp ≈ 1.8 GeV=c, whereQsAðBÞ denotes the
saturation momentum of the projectile or target, and Qsp ≈
0.9 GeV=c at 7 TeV. This is consistent with the existing
experimental result that ridge yield gets the maximum within
½1; 2" GeV=c of particle transverse momentum [1].
This p⊥ dependence of the ridge correlations can be well

explained under the CGC framework. The correlation
function is proportional to the correlated two-gluon pro-
duction, i.e. Eq. (8), which can be expressed by convolu-
tions of four uGDs [23–25,43–45]. One of the integrands is
as follows:

Φ2
Aðyp; k⊥ÞΦBðyp; p⊥ − k⊥ÞΦBðyq; q⊥ − k⊥Þ: ð12Þ

Since the maximum of ΦAðyp; k⊥Þ appears at jk⊥j ∼QsA,
the maximums of ΦBðyp; p⊥ − k⊥Þ and ΦBðyq; q⊥ − k⊥Þ
are located at jp⊥ − k⊥j ∼QsB and jq⊥ − k⊥j ∼QsB; the
strongest correlation requires [21,43,44]

jk⊥j ∼QsA; jp⊥ − k⊥j ∼QsB and jq⊥ − k⊥j ∼QsB:

ð13Þ

Based on Eq. (13) we estimate that the maximum of the
correlation should be near jp⊥j ∼ jq⊥j ∼QsA þQsB. The

correlation function C indeed shows maximums at jp⊥j ∼
jq⊥j ∼Qsp þQsp ¼ 2Qsp ¼ 1.8 GeV=c in pp collisions,
jp⊥j ∼ jq⊥j ∼QsA þQsA ¼ 2QsA ¼ 2.8 GeV=c in AA
collisions, and jp⊥j ∼ jq⊥j ∼Qsp þQsA ¼ 2.3 GeV=c in
pA collisions (see Fig. 3 in Ref. [43]). The strongest
correlation indeed lies near jp⊥j ∼ jq⊥j ∼QsA þQsB.
As we know, CGC has a consistent description for

different colliding systems. The only parameter is the
saturation momentum Qs. Qs is x dependent. As Eq. (1)
demonstrates, when

ffiffiffi
s

p
increases, the rapidity y must

increase to get the same x. We expect the rebound of
rapidity correlations should appear at larger rapidities for
higher colliding energies. One of the variables of per-
trigger yield is Δy, which reflects the rapidity gap rather
than the rapidity location. Correlations with rapidity
location as an independent variable are the differential
correlation function, i.e.

Cðp⊥; yp; q⊥; yqÞ ¼
dN2

d2p⊥dypd2q⊥dyq
dN1

d2p⊥dyp
dN1

d2q⊥dyq

− 1 ¼
dNcorr

2

d2p⊥dypd2q⊥dyq
dN1

d2p⊥dyp
dN1

d2q⊥dyq

:

ð14Þ

Here dN2

d2p⊥dypd2q⊥dyq
and dN1

d2p⊥dyp
are the two-gluon production

and the single-gluon production, respectively, the same
with that in Eq. (8).
Cðp⊥; yp; q⊥; yqÞ as a function of yq, i.e. Δy, for yp ¼ 0,

p⊥ ¼ q⊥ ¼ 1.5 GeV=c, ϕp ¼ ϕq ¼ 0 is shown in Fig. 4(b).
The trigger particle has yp ¼ 0, being at the central rapidity
region. The associated particle has yq. The solid, dashed
and dot-dashed lines denote small x, middle x and large x
regions of the associated particle, respectively. The peak
around Δy ¼ 0 reflects correlations between radiated
gluons. The peak at Δy ≈ 4.0 reflects correlations between
radiated gluons (yp ¼ 0) and source gluons (yq ≈ 4.0), so
the rebound of rapidity correlations at jΔyj ≈ 4.0 is caused

FIG. 4. (a) The per-trigger yield as a function of Δy at Δϕ ¼ 0 for the rapidity window of ½−2.4; 2.4". The red and the black curves are
for 7 TeVand 13 TeV, respectively. The solid line, dashed line and dot-dashed line represent ridge yield of transverse momentum interval
[1, 3], [1, 2] and ½2; 3" GeV=c, respectively. (b) Differential correlation function as a function of Δy at p⊥ ¼ q⊥ ¼ 1.5 GeV=c and
Δϕ ¼ 0. The red and black curves are for 7 TeV and 13 TeV, respectively.
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• The rebound is more easily observed in the 
differential correlation function ---
a more obvious “W” shape

integrated correlation function differential correlation function
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PHENIX and STAR collaborations report different values of v2 
/ v3. Their detectors cover forward and central rapidity regions.

Gluon dynamics is a function of rapidity. Due this, there may 
be no discrepancy between PHENIX and STAR measurements.
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• Physical Picture: Different rapidity regions 
has different degrees of freedom of gluon

• Calculate ridge corr. at large ∆𝑦
• Structures in ∆𝑦 direction consistent with 

CMS measurements
• These features can be used to directly test 

the CGC dynamics

SUMMARY
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Thank you!
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• the leading logarithmic accuracy in x 
• the leading graphs of op

qr
• p;, q; ≳ 	𝑄Y
• one-loop approximation of BK eq.
• AAMQS initial condition
• 𝑄YtJE = 0.168	GeVE pp collision at 7 TeV, 𝑄YtZE =
0.504	GeVE

• the leading order Balitsky-Kovchegov (BK) equation with 
a running coupling kernel, Balitsky’s prescription

• a phenomenological extrapolation of uGD at large x
unintegrated gluon dis. (uGD)

Φ 𝑥,𝐤; = wCx
wCxy

z
Φ 𝑥t, 𝐤; for 𝑥 > 𝑥t

ΦZ(\) 𝑥, 𝐤; =
𝑁4k;E

4𝛼Y
` dE𝐫;e~𝐤p�𝐫p 1 − 𝒩��.(𝐫;, 𝑌)

dipole forward scattering amplitude


