### QPT 2023, Dec14-19, Zhuhai

Nuclear cluster structure effect in O+O collisions at RHIC energy

Speaker: Xin-Li Zhao (赵新丽) Coauthors: Guo-Liang Ma(马国亮), You Zhou (周铀) Chao Zhang (张潮), Zi-Wei Lin (林子威)









## Outline

#### Introduction

►Improved AMPT

≻O+O results and discussions

➢Summary

J. Y. Jia, S. L. Huang, C. J. Zhang, PRC 105, 014906 (2022)



PHYSICAL REVIEW LETTERS 130, 212302 (2023)

#### Evidence of Hexadecapole Deformation in Uranium-238 at the Relativistic Heavy Ion Collider

Wouter Ryssens<sup>0</sup>,<sup>1,\*</sup> Giuliano Giacalone<sup>0</sup>,<sup>2</sup> Björn Schenke<sup>0</sup>,<sup>3</sup> and Chun Shen<sup>04,5</sup>

J. Y. Jia, S. L. Huang, C. J. Zhang, PRC 105, 014906 (2022)



<sup>96</sup>Zr

PHYSICAL REVIEW LETTERS 130, 212302 (2023)

#### Evidence of Hexadecapole Deformation in Uranium-238 at the Relativistic Heavy Ion Collider

Wouter Ryssens<sup>(0)</sup>,<sup>1,\*</sup> Giuliano Giacalone<sup>(0)</sup>,<sup>2</sup> Björn Schenke<sup>(0)</sup>,<sup>3</sup> and Chun Shen<sup>(0)</sup>,<sup>4,5</sup>

#### PHYSICAL REVIEW LETTERS 125, 222301 (2020)

Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions

Hanlin Li<sup>®</sup>,<sup>1</sup> Hao-jie Xu<sup>®</sup>,<sup>2,\*</sup> Ying Zhou,<sup>3</sup> Xiaobao Wang,<sup>2</sup> Jie Zhao,<sup>4</sup> Lie-Wen Chen,<sup>3,†</sup> and Fuqiang Wang<sup>2,4,‡</sup>

#### Determine the neutron skin type by STAR data

| HJX, et.al., PLB819, 136453 (2021)<br>Normal Nuclei Neutron-Skin Nuclei Neutron-Halo Nuclei |        |        | Neutron-skin n | uclei and neutron-halo nu<br><sup>96</sup> Ru |       |       | lei for Zr |
|---------------------------------------------------------------------------------------------|--------|--------|----------------|-----------------------------------------------|-------|-------|------------|
| P T                                                                                         | ↑ core | ρ core |                | R                                             | а     | R     | а          |
| <u> </u>                                                                                    | n Skin | 1      | р              | 5.085                                         | 0.523 | 5.021 | 0.523      |
| P                                                                                           | P      | p halo | skin-type n    | 5.085                                         | 0.523 | 5.194 | 0.523      |
|                                                                                             | → r    |        | halo-type n    | 5.085                                         | 0.523 | 5.021 | 0.592      |

J. Y. Jia, S. L. Huang, C. J. Zhang, PRC 105, 014906 (2022)



<sup>238</sup>U

<sup>96</sup>Zr

<sup>129</sup>Xe

PHYSICAL REVIEW LETTERS 130, 212302 (2023)

#### Evidence of Hexadecapole Deformation in Uranium-238 at the Relativistic Heavy Ion Collider

Wouter Ryssens<sup>0</sup>,<sup>1,\*</sup> Giuliano Giacalone<sup>0</sup>,<sup>2</sup> Björn Schenke<sup>0</sup>,<sup>3</sup> and Chun Shen<sup>04,5</sup>

#### PHYSICAL REVIEW LETTERS 125, 222301 (2020)

Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions

Hanlin Li<sup>1</sup>,<sup>1</sup> Hao-jie Xu<sup>1</sup>,<sup>2,\*</sup> Ying Zhou,<sup>3</sup> Xiaobao Wang,<sup>2</sup> Jie Zhao,<sup>4</sup> Lie-Wen Chen,<sup>3,†</sup> and Fuqiang Wang<sup>2,4,‡</sup>

#### Determine the neutron skin type by STAR data

| HJX, et.al., PLB819, 136453 (2021) |                    |                       |        | Neutron skin nuclei and neutron halo nuclei. |       |                  |       |       |  |
|------------------------------------|--------------------|-----------------------|--------|----------------------------------------------|-------|------------------|-------|-------|--|
| Normal Nuclei                      | Neutron-Skin Nucle | i Neutron-Halo Nuclei |        |                                              |       | <sup>96</sup> Ru |       | 967r  |  |
| P                                  | <b>↑</b> core      | ρ↑ core               |        |                                              | R     | a                | R     | a     |  |
| n                                  | 1 Skin             | 1                     | -      | р                                            | 5.085 | 0.523            | 5.021 | 0.523 |  |
| p                                  | p                  | p halo                |        | skin-type n                                  | 5.085 | 0.523            | 5.194 | 0.523 |  |
| <b>→</b> 1                         | r ⊢                | r i                   | ſ<br>→ | halo-type n                                  | 5.085 | 0.523            | 5.021 | 0.592 |  |

#### PHYSICAL REVIEW LETTERS 128, 082301 (2022)

#### Evidence of the Triaxial Structure of <sup>129</sup>Xe at the Large Hadron Collider

Benjamin Bally<sup>0</sup>,<sup>1</sup> Michael Bender<sup>0</sup>,<sup>2</sup> Giuliano Giacalone<sup>0</sup>,<sup>3</sup> and Vittorio Somà<sup>6</sup>

J. Y. Jia, S. L. Huang, C. J. Zhang, PRC 105, 014906 (2022)



<sup>238</sup>U

<sup>96</sup>Zr

<sup>129</sup>Xe

<sup>208</sup>Pb

PHYSICAL REVIEW LETTERS 130, 212302 (2023)

#### Evidence of Hexadecapole Deformation in Uranium-238 at the Relativistic Heavy Ion Collider

Wouter Ryssens<sup>0</sup>,<sup>1,\*</sup> Giuliano Giacalone<sup>0</sup>,<sup>2</sup> Björn Schenke<sup>0</sup>,<sup>3</sup> and Chun Shen<sup>04,5</sup>

#### PHYSICAL REVIEW LETTERS 125, 222301 (2020)

Probing the Neutron Skin with Ultrarelativistic Isobaric Collisions

Hanlin Li<sup>®</sup>,<sup>1</sup> Hao-jie Xu<sup>®</sup>,<sup>2,\*</sup> Ying Zhou,<sup>3</sup> Xiaobao Wang,<sup>2</sup> Jie Zhao,<sup>4</sup> Lie-Wen Chen,<sup>3,†</sup> and Fuqiang Wang<sup>2,4,‡</sup>

#### Determine the neutron skin type by STAR data

| HJX, et.al., PLB | 819, 136453 (2021) | Neutron-skin nuclei and neutron-halo nuclei for 7 |             |                  |       |                  |       |
|------------------|--------------------|---------------------------------------------------|-------------|------------------|-------|------------------|-------|
| Normal Nuclei    | Neutron-Skin Nucle | i Neutron-Halo Nuclei                             |             | <sup>96</sup> Ru |       | <sup>96</sup> 7r |       |
| Pt               | ↑ core             | ρ ↑ core                                          |             | R                | a     | R                | a     |
| n                | 1 Skin             | 1                                                 | р           | 5.085            | 0.523 | 5.021            | 0.523 |
| p                |                    | p halo                                            | skin-type n | 5.085            | 0.523 | 5.194            | 0.523 |
|                  | $\rightarrow$ r    | $\rightarrow$ r                                   | halo-type n | 5.085            | 0.523 | 5.021            | 0.592 |

#### PHYSICAL REVIEW LETTERS 128, 082301 (2022)

#### Evidence of the Triaxial Structure of <sup>129</sup>Xe at the Large Hadron Collider

Benjamin Bally<sup>0</sup>,<sup>1</sup> Michael Bender<sup>0</sup>,<sup>2</sup> Giuliano Giacalone<sup>0</sup>,<sup>3</sup> and Vittorio Somà<sup>6</sup>

PHYSICAL REVIEW LETTERS 131, 202302 (2023)

#### Determination of the Neutron Skin of <sup>208</sup>Pb from Ultrarelativistic Nuclear Collisions

Giuliano Giacalone<sup>®</sup>,<sup>1</sup> Govert Nijs,<sup>2</sup> and Wilke van der Schee<sup>3,4</sup>

õ

#### **Cluster structures in physics**





Clusters play an extremely important role at all levels of matter.

### **Cluster structures in physics**





Clusters play an extremely important role at all levels of matter.

### **Cluster structures in physics**





- Clusters play an extremely important role at all levels of matter.
- > Understanding and describing cluster structure are an important scientific problem.

#### **Cluster structure for <sup>16</sup>O**



#### **Cluster structure for <sup>16</sup>O**



#### PHYSICAL REVIEW C 97, 021304(R) (2018)

**Rapid Communications** 

#### "Container" evolution for cluster structures in <sup>16</sup>O

Y. Funaki

PRL 101, 082502 (2008)

PHYSICAL REVIEW LETTERS

week ending 22 AUGUST 2008

#### α-Particle Condensation in <sup>16</sup>O Studied with a Full Four-Body Orthogonality Condition Model Calculation

Y. Funaki,<sup>1</sup> T. Yamada,<sup>2</sup> H. Horiuchi,<sup>3,4</sup> G. Röpke,<sup>5</sup> P. Schuck,<sup>6,7</sup> and A. Tohsaki<sup>3</sup>

### **STAR results for O+O collisions**

#### From Jin-Hui Chen's talk, QPT2023

### Flow in O+O collisions

0.00

1

10

TPC Centrality(%)



 $\epsilon_2$ {4}/ $\epsilon_2$ {2} from nucleon or quark Glauber model with clusters (e.g.  $\alpha$  clusters) describes v<sub>2</sub>{4}/v<sub>2</sub>{2} better than without

11

### **Nuclear structures in improved AMPT**



Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, PRC 72, 064901 (2005)

### **Nuclear structures in improved AMPT**



Z.W. Lin, C.M. Ko, B.A. Li, B. Zhang, S. Pal, PRC **72**, 064901 (2005)

### **Improved Version of the String Melting AMPT**



#### Final particle spectra

- 1. New quark coalescence model.
- 2. Improved heavy quark productions.
- 3. Modern set of parton distribution functions in proton and impact parameter-dependent nuclear shadowing.

Zi-Wei Lin, Liang Zheng, NUCL SCI TECH (2021) 32:113

### **Improved AMPT Results**



The baryon ratios in AMPT with new coalescence are consistent with data.

### **Improved AMPT Results**



The baryon ratios in AMPT with new coalescence are consistent with data. Chao Zhang, Liang Zheng, Shusu Shi, Zi-Wei Lin, PRC 104, 014908 (2021)



> Improved AMPT model describes the centrality dependences of charged particles and  $\langle p_T \rangle$  rather well.

### $\langle p_T \rangle$ & $v_2$ in improved AMPT



 $\succ \langle p_T \rangle$  is reasonable in improved AMPT for O+O collisions.

### $\langle p_T \rangle$ & $v_2$ in improved AMPT



- $\succ \langle p_T \rangle$  is reasonable in improved AMPT for O+O collisions.
- Improved AMPT failed to reproduce data.
- > The impact parameter dependence of  $v_2$  is significant in AMPT.

### $\varepsilon_2 \& v_2$ in improved AMPT



The formation time for each parton  $\tau'_0 = const \cdot E/m_T^2$ ,  $\tau_0 = E/m_T^2$ 

The formation time dependence of ε<sub>2</sub> & v<sub>2</sub> is significant in AMPT.
ν<sub>2</sub> at τ'<sub>0</sub> = 6τ<sub>0</sub> is close to data.

### Initial parton distributions for different $au_0'$



> The formation time affects the distributions of initial partons, then affects  $\varepsilon_2 \& v_2$ .

21

### $v_2$ & $v_3$ in improved AMPT



- $\succ$  The effect of cluster structure is significant for  $v_2$  and  $v_3$ .
- The v<sub>2</sub> results are close to data and higher than data at central collisions but lower at mid-central collisions.
- $\succ$  The  $v_3$  results are higher than data.

### $v_2(p_T)$ & $v_3(p_T)$ in improved AMPT



▶ v<sub>2</sub>(p<sub>T</sub>) results are lower than data at p<sub>T</sub> > 1 GeV.
▶ v<sub>3</sub>(p<sub>T</sub>) results are close to data.

## Summary

- Improved AMPT roughly reproduce the STAR data.
- Different nuclear structures including cluster have obviously effect on v<sub>2</sub>.
- Formation time has significant effect on v<sub>2</sub> in O+O collisions.

## Summary

- Improved AMPT roughly reproduce the STAR data.
- Different nuclear structures including cluster have obviously effect on v<sub>2</sub>.
- Formation time has significant effect on v<sub>2</sub> in O+O collisions.

# Thank you for your attention!