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By including the nonlinear effect

• Gamma is effectively unchanged. 

• D is significantly affected. 
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MSR effective action:

Equation of motion for n:

• Leading effects caused by the nonlinear term in E[n]=0

~ the effect of 1-loop corrections on the 
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9. Loop calculations 

• The response function: 

• Rewriting as

• aaa in agreement with result of our fitting 
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In a simple diffusive system without a UV gapped mode

linear response   leading nonlinear cont.

Long-time tail

• The appearance  of          in             

is related to non-analyticity of 

• Branch points are produced due to the interactions. 
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• Our theory can be well applied to systems with a slowly-relaxing mode;

e.g. the QGP near the critical point

• In the simplest setup, 
• Take the background being a non-fluctuating  Bjorken flow

• Consider a U(1) self-interacting charge on top of this flow

• We estimate the nonlinear contribution to the late time behavior of this density:

• It is interesting to 
• Make the background dynamical

• Repeat the calculation near the critical point
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11. Long-time tails in UV-regulated theory of diffusion

Our theory has two scales:

• When 

• We numerically find:

• The gapped mode doesn’t affect the tail, while the exponential factor changes.


