

Exploring the hadron-quark phase transition in neutron stars

Pianpian Qin (秦翩翩)

Collaborators: Zhan Bai, Sibo Wang, Chencan Wang, Si-xue Qin

Contents

Introduction

□ Theoretical framework

- Nuclear matter: RBHF theory
- Quark matter: DSE approach
- Results and discussions
 - EOS for hybrid star
 - Mass-Radius relation, tidal deformability
- **D** Summary and prospects

Neutron Star

• One of the most compact objects in universe

$$\rho_c = 5 \sim 10 \ \rho_0$$

□ Internal structure and composition

- Atmosphere
- Crust: nucleons and electrons
- Outer core: nucleons, electrons, and muons
- Inner core: hyperons, meson condensates, quark matter

Astronomical observation

Massive neutron stars, joint mass-radius observation, and GW

Theoretical methods at finite density

Nuclear Matter			G.F. Burgio et al., PPNP 120 , 103879 (2021)	
	Density functional theory (DFT)	Effective NN interaction	Skyrme, Gogny, RMF, RHF etc.	
	Ab initio method	Realistic ININ Interaction	(R)BHF, Variational, Mont-Carlo etc.	
	Quark Matter		C.D. Roberts et al., PPNP 45 , S1 (2000)	
	Phenomenological model	MIT bag model, NJL model, quark-meson model		
	Continuum field theory	Dyson-Schwinger equatio	n (DSE) approach, FRG	

Construction schemes

Research status

	Phenomenological model	Continuum field theory	Quark
DFT	Schertler (1999): RMF+NJL Agrawal (2010): MF+MIT/NJL Logoteta (2013): RMF+NJL Orsaria (2013): NRMF+NJL Wu (2017,2018): RMF+NJL Ju (2021): QMC+MIT Huang (2022): RMF+NJL	Bai (2018): RMF+DSE Bai (2021): RMF+DSE	
Ab initio	Klahn (2007): RBHF+NJL Agrawal (2010): APR+MIT/NJL Masuda (2013): APR+NJL Kojo (2015): APR+NJL Li (2015): BHF+NJL Baym (2019): APR+NJL	Chen (2011): BHF+DSE Chen (2012): BHF+DSE Chen (2015): BHF+DSE Chen (2016): BHF+DSE Qin (2023): RBHF+DSE	
Hadron			

This work: exploring the possible hadron-quark phase transition in neutron stars with the RBHF+DSE methods in relativistic framework.

Contents

Introduction

- Theoretical framework
 - Nuclear matter: RBHF theory
 - Quark matter: DSE approach
- Results and discussions
 - EOS for hybrid star
 - Mass-Radius relation, tidal deformability
- Summary and prospects

Nuclear matter: Relativistic-Brueckner-Hartree-Fock (RBHF)

□ The effective NN interaction: G matrix

□ The ground state energy of nuclear matter

B.D. Day, RMP **39**, 719 (1967) S. Wang et al., PRC **105**, 054309 (2022)

Quark matter: Dyson-Schwinger Equation (DSE) approach

QCD Lagrangian

$$\mathcal{L}_{QCD} = \sum_{f=1}^{N_f} \bar{\psi}^f \left(i\gamma_\mu D^\mu - m_0^f \right) \psi^f - \frac{1}{4} F_{\mu\nu a} F^{\mu\nu a}$$

$$D^{\mu} = \partial^{\mu} - ig_0 A^{\mu}_a t_a = \partial^{\mu} - ig_0 A^{\mu} \qquad F^{\mu\nu}_a = \partial^{\mu} A^{\nu}_a - \partial^{\nu} A^{\mu}_a + g_0 f_{abc} A^{\mu}_b A^{\nu}_c$$

D DSE for quark propagator

$$S(p;\mu)^{-1} = Z_2 \left(i \boldsymbol{\gamma} \cdot \boldsymbol{p} + i \gamma_4 \tilde{p}_4 + m_q \right) + \int \frac{d^4 q}{(2\pi)^4} \mathcal{G}(k^2;\boldsymbol{\mu}) D_{\rho\sigma}^{\text{free}}(k) \gamma_\rho S(q;\mu) \Gamma_{\sigma}(q,p;\mu)$$

Truncation scheme and Gluon model

P. Maris et al., PRC **60**, 055214 (1999) H. Chen et al., PRD **84**, 105023 (2011)

 $\omega_{\rm eff}$: effective interaction width

EOS ($P, \mathcal{E}, \rho, \mu_B$)

□ The quark number density

H. Chen et al., PRD **78**, 116015 (2008) H. Chen et al., PRD **84**, 105023 (2011)

$$f_q(|\boldsymbol{p}|;\boldsymbol{\mu}) = \frac{1}{4\pi} \int_{-\infty}^{\infty} dp_4 \operatorname{tr}_{\mathrm{D}}[-\gamma_4 \boldsymbol{S}_q(\boldsymbol{p};\boldsymbol{\mu})]$$
$$\boldsymbol{n}_q(\boldsymbol{\mu}) = 6 \int \frac{d^3 p}{(2\pi)^3} f_q(|\boldsymbol{p}|;\boldsymbol{\mu})$$

□ The EOS for the quark matter

$$P_{q}(\mu_{q}) = P_{q}(\mu_{q,0}) + \int_{\mu_{q,0}}^{\mu_{q}} d\mu \, \boldsymbol{n_{q}}(\boldsymbol{\mu})$$
$$\boldsymbol{P_{Q}}(\boldsymbol{\mu_{u}}, \boldsymbol{\mu_{d}}, \boldsymbol{\mu_{s}}) = \sum_{q=u,d,s} P_{q}(\mu_{q})$$
$$(P, \mu_{B}) \xrightarrow{\text{Thermo-relation}} (P, \boldsymbol{\varepsilon}, \boldsymbol{\rho}, \mu_{B})$$

Contents

Introduction

- □ Theoretical framework
 - Nuclear matter: RBHF theory
 - Quark matter: DSE approach
- Results and discussions
 - EOS for hybrid star
 - Mass-Radius relation, tidal deformability
- **D** Summary and prospects

EOSs for pure hadron star and pure quark star

 $\square P - \rho$ relation and $\varepsilon - \rho$ relation

• The differences of the results from pvCD-Bonn A, B, and C are negligible

• With a larger ω_{eff} , the energy density and pressure become larger.

EOSs for hybrid stars under **Maxwell construction**

 $\square P - \mu_B$ relation and $P - \rho$ relation

Thermody	Thermodynamic parameters at pt. points						
Model	$\mu_{n,c}$	$P(\mu_{\mathrm{n},c})$	ρ_H	$ ho_Q$			
WOUEI	[GeV]	$[\text{GeV} \cdot \text{fm}^{-3}]$	$[ho_{sat}]$	$[ho_{sat}]$			
A-0.5	1.995	0.916	8.105	16.689			
A-0.35	1.640	0.471	6.078	10.940			
A-0.25	1.366	0.225	4.379	7.189			
BHF-0.35	1.416	0.193	3.556	5.744			
	1						

• For a larger ω_{eff} , the critical baryon chemical potential and density region are higher, and the corresponding pressure is larger

The M-R relation for hybrid star under Maxwell construction

 \rightarrow with the present models, there is no stable quark core inside the neutron star under the Maxwell construction

EOSs for hybrid stars under 3-window construction

 \rightarrow For a lager ω_{eff} , the energy density and pressure are larger in the crossover region.

The M-R relation for hybrid star under 3-window construction

Maximum mass and corresponding radius							
Model	M_{max} $[M_{\odot}]$	R_{Mmax} [km]	R_{1.4M⊙} [km]				
pvCD-Bonn A	2.198	11.15	12.47				
A-0.5	2.530	13.54	13.93				
A-0.35	2.102	12.91	13.20				
A-0.25	1.539	12.39	12.57				

 \rightarrow For $\omega_{eff} = 0.35$ GeV, the maximum mass of the hybrid star is $2.1M_{\odot}$, which is consistent with the current constraints from astrophysical observation. 18

Pure hadron star, pure quark star, and hybrid stars

 \rightarrow the hybrid star under the 3-window construction is consistent with the joint mass and radius observations of neutron stars

19

Pure hadron star, pure quark star, and hybrid stars

□ Tidal deformability

→The tidal deformability of the hybrid star under the 3-window construction is

 $\Lambda_{1.4M_{\odot}}$ = 700, slightly larger than the constraint $\Lambda_{1.4M_{\odot}}$ = 190⁺³⁹⁰₋₁₂₀ from GW170817 ₂₀

□ RBHF + DSE is used to explore the hadron-quark phase transition in NS

- First-order phase transition (Maxwell construction), negative
- **Crossover** (3-window construction), **positive**

□ Further exploration

- Gibbs construction for the first-order phase transition
- Interaction models in DSE approach

Hadron-quark phase transition: EOS for hybrid star

Maxwell construction

$$P_H(\mu_{B,c}) = P_Q(\mu_{B,c}) \qquad \qquad \varepsilon(\mu_B) = \begin{cases} \varepsilon_H, & \text{if } \mu_B < \mu_{B,c} \\ \varepsilon_Q, & \text{if } \mu_B > \mu_{B,c} \end{cases}$$

□ 3-window construction

$$\varepsilon(\rho) = f_{-}(\rho)\varepsilon_{H}(\rho) + f_{+}(\rho)\varepsilon_{Q}(\rho)$$

$$f_{\pm} = \frac{1}{2} \left(1 \pm \tanh(\frac{\rho - \bar{\rho}}{\Gamma})\right)$$

$$(\varepsilon, \rho) \xrightarrow{\text{Thermo-relation}} (P, \varepsilon, \rho, \mu_B)$$

EOS: 3-window construction and parameters

D Different ($\overline{\rho}$, Γ) and the density dependent of pressure for hybrid stars

- Selection criteria for $(\overline{\rho}, \Gamma)$
 - \checkmark Density range \rightarrow conforms to the model
 - ✓ Stable star \rightarrow EOS is monotonic
 - ✓ Massive star \rightarrow EOS is stiff enough

$$\rightarrow (\overline{\rho}, \Gamma) = (3.5, 1.5)$$

The relations to obtain EOS ($P, \mathcal{E}, \rho, \mu_B$)

□ Thermo-relations

$$\rho(\mu) = \frac{\partial P(\mu)}{\partial \mu}$$
$$\mu = (\varepsilon + P)/\rho$$

 $\square \beta$ equilibrium, charge equilibrium

$$\mu_d = \mu_u + \mu_e = \mu_s,$$

$$\frac{2\rho_u - \rho_d - \rho_s}{3} - \rho_e - \rho_{\mu^-} = 0.$$

$$P = \rho^2 \frac{\partial(\varepsilon/\rho)}{\partial\rho}$$

D From quark to hadron

$$\rho_B = \frac{1}{3} \left(\rho_u + \rho_d + \rho_s \right),$$

$$\mu_B = \mu_u + 2\mu_d.$$

Neutron star properties

□ Tolman-Oppenheimer-Volkov (TOV), to obtain M-R relation

$$\frac{dP(r)}{dr} = -\frac{[\varepsilon(r) + P(r)][M(r) + 4\pi r^3 P(r)]}{r^2 [1 - 2M(r)/r]}$$
$$\frac{dM(r)}{dr} = 4\pi r^2 \varepsilon(r)$$

□ To solve tidal deformability

$$r\frac{dy(r)}{dr} + y^{2}(r) + y(r)F(r) + r^{2}Q(r) = 0$$

$$\Lambda = \frac{2}{3}k_{2}C^{-5}$$

$$F(r) = \left[1 - \frac{1}{r}\right]^{-1}\left\{1 - 4\pi r^{2}[\mathcal{E}(r) - P(r)]\right\}$$

$$Q(r) = \left\{4\pi \left[5\mathcal{E}(r) + 9P(r) + \frac{\mathcal{E}(r) + P(r)}{\partial P/\partial \mathcal{E}}\right] - \frac{6}{r^{2}}\right\} \times \left[1 - \frac{2M(r)}{r}\right]^{-1}$$

$$C = M/R$$

$$k_{2} = \frac{8C^{5}}{5}(1 - 2C)^{2}[2 - y_{R} + 2C(y_{R} - 1)] \times \left\{6C[2 - y_{R} + C(5y_{R} - 8) + 4C^{3}[13 - 11y_{R} + C(3y_{R} - 2) + 2C^{2}(1 + y_{R})]\right]$$

$$+3(1 - 2C)^{2}[2 - y_{R} + 2C(y_{R} - 1)] \ln(1 - 2C)]^{-1}.$$

 $[1 \quad 2M(r)]^{-1}$ $[1 \quad 4 \quad 2[f(r)]^{-1}$

Latent heat and M-R relation

Latent heat and M-R relation

Vacuum pressure and M-R relation

