

The production of exotic hadrons T_{cc} and $X_{cs\overline{cs}}$ in heavy ion collisions

胡元元 (Yuanyuan Hu)

ZUNYI NORMAL UNIVERSITY, GuiZhou, ZunYi

Collaborators: J. Liao, E. Wang, Q. Wang, H. Xing and H. Zhang

Based on: Y. Hu, J. Liao, E. Wang, Q. Wang, H. Xing and H. Zhang, Phys. Rev. D. 104. L111502 (2021); Y. Hu, H. Zhang, Chin. Phys. C. 47, No. 5 (2023) 051001

第十五届QCD相变与相对论重离子物理研讨会, 2023年12月14-19日, 珠海

Outline

□ Introduction

- □ Framework-AMPT
- Production of doubly charmed exotic hadrons in heavy ion collision
- **D** Production of $X_{cs\overline{cs}}$ in heavy ion collision
- $\hfill\square$ Summary and outlook

Exotic Hadron States

- Hadrons are mostly found in two modes:
 - > Mesons $(q\overline{q})$
 - > Baryons (qqq)
- Many other types of color singlet compound hadrons, the so-called exotics, could exist:

Compact tetraquark

Molecular tetraquark

Pentaquark

Glueball

Hybrid

- X: unknown
- Y: the vector exotic states 1^{--}
- Z: charged quarkoniumlike states

Charmed hadrons

- \succ Charmed mesons: D, D_s ...
- \succ Singly charmed baryons: $\Lambda_c\,,\, \varSigma_c\,,\, \varXi_c\,,\, \varOmega_c\,$...
- \succ Doubly and triply charmed hadrons: \varXi_{cc} , \varOmega_{ccc} ...

Multiquark state

 Table: Tetra- & pentaquark candidates Nature Commun. 13 (2022) 1,

 3351

 States

 Quark content

Table: Tetraquark and pentaquark candidates: Nature Commun. 13(2022)1, 3351	$\begin{array}{l} X_0(2900), X_1(2900) \\ \chi_{c1}(3872) \\ Z_c(3900), Z_c(4020), Z_c(4050), X(4100), Z_c(4200), Z_c(4430), R_{c0}(4240) \\ Z_{cs}(3985), Z_{cs}(4000), Z_{cs}(4220) \\ \chi_{c1}(4140), \chi_{c1}(4274), \chi_{c0}(4500), \chi_{c0}(4700), X(4630), X(4685), X(4740) \\ X(6900) \\ Z_b(10610), Z_b(10650) \end{array}$	cdus ccqq ccud ccus ccss cccc bbud
	$P_c(4312), P_c(4380), P_c(4440), P_c(4457), P_c(4357)$ $P_{cs}(4459)$	cc̄uud cc̄uds

- $\square X (3872) \quad J^{PC} = 1^{++} \quad (c\overline{c}q\overline{q})$
 - > Bell collaboration(2003)

 $B\to J/\Psi\pi^+\pi^-K$

- > $M_X = 3871.69 \pm 0.17 \text{MeV}$
- Decay pattern:

 $J/\Psi\rho(\pi^{+}\pi^{-}), J/\Psi\omega(\pi^{+}\pi^{-}\pi^{0}), D^{0}\overline{D}^{0*}/\overline{D^{0}}D^{0*}/D\overline{D}\pi, J/\Psi\gamma$

X(3872) -Belle Collaboration, PRL 91.262001(2003)

 $\square T_{cc} \quad J^{PC} = 1^+ \quad (cc\overline{q}\overline{q})$

- LHCb collaboration(2021)
 - $T^+_{cc} \to D^0 D^0 \pi^+$

>
$$M_{T_{cc}^+} = 3875 \pm 0.41 \text{MeV}$$

 T_{cc}^+ —LHCb Collaboration, Nature Commun. 13(2022) 1,3351; Nature Phys. (2022)

\square Estimated yields of X(3872) and T_{cc}

	RHIC				LHC			
	2q/3q/6q	4q/5q/8q	Mol.	Stat.	2q/3q/6q	4q/5q/8q	Mol.	Stat.
T_{cc}^{1a} Y(3872)	-1.0×10^{-4}	4.0×10^{-5} 4.0×10^{-5}	2.4×10^{-5} 7.8 × 10^{-4}	4.3×10^{-4}	-1.7×10^{-3}	6.6×10^{-4}	4.1×10^{-4} 1.3×10^{-2}	7.1×10^{-3}
^a Particles th	at are newly predi	icted by theoretic	cal models.	2.9 X 10	1.7 X 10	0.0 × 10	1.5 × 10	4.7 × 10

Heavy Ion Collision & AMPT

Structure of AMPT (String Melting version)

- □ Framework-AMPT
- Production of doubly charmed exotic hadrons in heavy ion collision
- **D** Production of $X_{cs\overline{cs}}$ in heavy ion collision
- □ Summary and outlook

Molecule states

- Coalescence of D mesons
 The relative distance between D meson pairs:
 - $R_{D\overline{D}^*} \sim 5 7fm$ $R_{DD^*} \sim 5 7fm$

Compared with experiment

Compared with the experiment, the amount produced by charm quark

The experimental data comes from ALICE Collaboration, JHEP03(2016)081

10

 \sum

Production of doubly charmed exotic hadrons in HIC

Total yields in 1M events

> Centrality dependence

- > When the centrality is large, T_{cc} is smaller than X(3872).
- > Isotriplet partners is even smaller than that of T_{cc}^+
- Pb-Pb collisions can provide us with an environment rich in charm quarks.

Y.Hu, J.Liao, E.Wang, Q.Wang, H.Xing and H.Zhang, Phys.Rev.D.104.L111502 (2021); Production of doubly charmed exotic hadrons in HIC

> Transverse momentum distribution and rapidity distribution in X(3872)and T_{cc}

- > Similar to normal hadrons.
- > The overall trends of X(3872) and T_{cc} of the two graphs are similar.
- > X(3872) is similar to T_{cc}^+ , T_{cc}^0 and T_{cc}^{++} are both smaller than X(3872).

Y. Hu, J. Liao, E. Wang, Q. Wang,
H. Xing and H. Zhang,
Phys. Rev. D. 104. L111502 (2021);

➢ Elliptic flow

> Elliptic flow: $v_2 \equiv \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle \quad p_x, p_y, p_z$ is

the three momentum of the produced hadron, with z-axis beam direction.

- Elliptic flow is the key observable for collective property of bulk medium.
- v₂ can be used as a QGP probe, can describe the geometry of the fireball at the beginning of the collision, and can be used to understand the generation of particles.
- > The properties of T_{cc} and X(3872) are almost the same, both have anisotropic flow.

Y. Hu, J. Liao, E. Wang, Q. Wang, H. Xing and H. Zhang, Phys. Rev. D. 104. L111502 (2021);

Production of doubly charmed exotic hadrons in HIC

- Estimate the production rate of the T_{cc} and X(3872) in the molecular picture.
- Centrality, rapidity, p_T distribution and Elliptic flow of T_{cc} .
- Fireball effect of T_{cc} is more significant than that of X(3872).
- The yield of T_{cc} is almost the same as that of the X(3872) in HIC.
- Explain why the T'_{cc}^{++} is not observed by LHCb and the relative small production rate $T'_{cc}^{0}/X(3872)$.

- □ Introduction
- □ Framework-AMPT
- Production of doubly charmed exotic hadrons in heavy ion collision
- **D** Production of $X_{cs\overline{cs}}$ in heavy ion collision
- □ Summary and outlook

Molecule states

- \succ Coalescence of D_s^+ mesons.
- > The relative distance between D_s^+ meson pairs:
 - 5fm < relative distance < 7fm
- ➢ Mass: $2M_{D_s^+} < M_X < 2M_{D_s^{+*}}$

□ Tetraquark:

> coalescence of diquark and anti-diquark

- > The relative distance between diquark pairs $R_{[cs][\overline{cs}]} < 1fm$
- \succ Mass: $2M_{[cs]_1} < M_X < 2M_{[\overline{cs}]_0}$
 - ➢ Maiani, et. al., PRD89(2014)114010

- $\square X_{cs\overline{cs}} \text{ simulation by AMPT}$
- Calibration of the baseline
 - AMPT does not have spin degrees of freedom, we distribute the yield into different spin state according to thermal model approximation

$$R\left(\frac{A}{B}\right) = \frac{Yield(A)}{Yield(B)} = e^{-(m_A - m_B)/T_{freezeout}}$$

 \succ $T_{freezaout} = 160 \text{MeV}$

 \succ The invariant mass is less than 70% is $D_s^+,$ 10% up and down as the theoretical error , the rest is $D_s^{+\ast}$

Compared with experiment

 $\langle \langle \rangle$

Compared with the experiment, the amount produced by charm quark and strange quark

>>

Production of $X_{cs\overline{cs}}$ in HIC

- □ Total yields in 1M events
 - Centrality distributions

Rapidity distributions

Y. Hu, H. Zhang, Chin. Phys. C. 47, No. 5 (2023) 051001

Transverse momentum distributions and Elliptic flow

Y. Hu, H. Zhang, Chin. Phys. C. 47, No. 5 (2023) 051001

- Estimate the production rate of the $X_{cs\overline{cs}}$ in the molecular picture and tetraquark picture .
- Centrality, rapidity, p_T distribution and Elliptic flow of $X_{cs\overline{cs}}$
- A volume effect is found from the centrality distribution of $X_{cs\overline{cs}}$, which could help us to distinguish the inner structure of $X_{cs\overline{cs}}$.
- The Pb-Pb collision process provides an environment rich in charm quarks and strange quarks.

Summary and outlook

Production of doubly charmed exotic hadrons in heavy ion collision

- Estimate the production rate of the T_{cc} in the molecular picture.
- Centrality, rapidity, p_T distribution of T_{cc} .
- Fireball effect of T_{cc} is more significant than that of X(3872).
- The yield of T_{cc} is almost the same as that of the X(3872) in HIC.
- Explain why the T_{cc}^{++} is not observed by LHCb and the relatively small production rate $T_{cc}^{0}/X(3872)$.

\square The production of $X_{cs\overline{cs}}$ and X(3872) in heavy ion collision

- Estimate the production rate of the X_{cscs} and in the molecular picture and tetraquark picture .
- Centrality, Rapidity, p_T distribution of $X_{cs\overline{cs}}$.
- A volume effect is found from the centrality distribution of $X_{cs\overline{cs}}$, which could help us to distinguish the inner structure of $X_{cs\overline{cs}}$.
- The Pb-Pb collision process provides an environment rich in charm quarks and strange quarks.

□ Outlook

- This size effect could help to explore the internal structure of $X_{cs\overline{cs}}$ through different collision systems, e.g. Pb-Pb, Au-Au, Xe-Xe, Cu-Cu, O-O, d-A/p-A, etc.
- Hadron Gas Phase: interact with other hadrons:production + absorption
- •••

Thank you for your attention!

2023/12/18

第十五届QCD相变与相对论重离子物理研讨会,2023年12月14-19日,珠海

23