

# Investigating collective flow in high energy pp collisions with a multi-phase transport model

Liang Zheng(郑亮)

China University of Geosciences (Wuhan)



15th workshop on QCD Phase Transition and Relativistic Heavy Ion Collisions Zhuhai Guangdong 2023/12/18

## Outline

- Collectivity in small system
- AMPT with PYTHIA8 initial condition and subnucleon structures
- Near side long range correlations
- Collective flow in pp collisions

## Collectivity in small system

Long range correlation in high Ratio of yields to (π<sup>-</sup> 0 2K multiplicity pp/pA: "ridge" Ф JHEP 09 (2010) 091 PRC 104 (2021) 014903  $\Lambda + \overline{\Lambda} (\times 2)$ (d) CMS N  $\geq$  110, 1.0GeV/c<p\_<3.0GeV/c structure ~ 0.2r ATLAS **Template Fit** Pb+Pb, 1.0 ub-1 ф ф  $2.0 < |\Delta \eta| < 5.0$ s<sub>NN</sub> = 5.02 TeV, 0nXn Non-zero azimuthal collective p+Pb,  $N_{\rm ob}^{\rm rec} \ge 60$  $\Sigma_{\gamma} \Delta \eta > 2.5$  $\Xi^{+}+\Xi^{+}$  (×6) h nn  $N_{\rm rec}^{\rm rec} \ge 60$  $20 < N_{+}^{rec} \le 60$  $R(\Delta \eta, \Delta \phi)$ flow even in UPC collisions Photonuclear φ. 10  $\Omega^- + \overline{\Omega}^+$  (×16) Multiplicity dependent strangeness enhancement ALICE pp, √s = 7 TeV p-Pb, √s<sub>NN</sub> = 5.02 TeV Pb-Pb, VSNN = 2.76 TeV **PYTHIA8** -2 DN 4 ·· DIPSY p<sub>T</sub> [GeV] **FPOSTHO** 10<sup>2</sup> 10 10  $\langle dN_{ch}/d\eta \rangle_{|\eta| < 0.5}$ Hydrodynamic final state evolution PLB 765 (2017) 193 EPJC 76 (2016) 7, PLB 774 (2017) 351, PLB 780 (2018) 495, EPJC 80 (2020) 9, CMS pp √s = 13 TeV pp √s = 13 TeV v<sub>2</sub><sup>sub</sup>{2, |Δη|>2} 0.10 PRC 101 (2020) 2  $|\Delta \eta| > 2$ v<sub>2</sub>{4} CGC Initial state correlations v<sub>2</sub>{6} ٠ V<sub>2</sub>{8} 0 10 PRL 108 (2012) 262001, PRD 87 (2013) 051502, PRL 117 (2016) 162301 v<sub>2</sub>{LYZ v<sub>2</sub><sup>sub</sup>{2}  $^{2}$ 0.05 **Collective string effects** 0.05 color reconnection: PRL 111 (2013) 042001, PRD 92 (2015) 094010 0.3 < p\_ < 3.0 GeV/c color rope: JHEP 03 (2015) 148, PLB 779 (2018) 58, JHEP 03 (2021) 270  $105 \le N_{trk}^{\text{offline}} < 150$ ) - (10  $\le N_{trk}^{\text{offline}}$ < 20 |n| < 2.4 Parton escape effects 50 100 p\_ (GeV/c) N<sup>offline</sup>

PLB 753 (2016) 506

## A multi-phase transport model (AMPT)



PRC 72 (2005) 064901 Nucl.Sci.Tech. 32 (2021) 113

- AMPT has been extensively applied in collectivity study for large systems
- System size dependence has been improved recently



## AMPT x PYTHIA8



## Sub-nucleon structure



## Space-time evolution

- Different features of spatial eccentricity distribution
- Rather flat eccentricity with sub-nucleon fluctuation (slightly increasing towards high multiplicity/central events)
- Energy density above ~ 1GeV/fm<sup>3</sup>, within t<1 fm/c.





## Compared to original AMPT

- Original AMPT fails to describe the multiplicity dependence
- Improvement may come from the MPI based PYTHIA8 initial condition



pp 13 TeV, hadron level

## Two particle correlation

pp 13 TeV, charged hadron 1<p\_T<3 GeV/c,  $| \triangle \eta |$ >2

- Near side ridge appears with sub-nucleon fluctuation
- Significant ridge also shows in AMPT due to its large initial eccentricity
- Robust HM ridge developed in parton evolution stage



EPJC 81 (2021) 8, 755

#### **Two-particle cumulants**

- Low multiplicity dominate by non-flow effects
- Final state parton rescattering leads to sizable c<sub>2</sub>{2}
- Non-flow effectively subtracted with low multiplicity events
- With all FSI, data behavior well captured



## Four-particle cumulants

- Parton rescattering leads to the most significant negative c<sub>2</sub>{4}
- Sign change dependent on multiplicity observed in the model calculations
- Data discrepancy due to different event averaging treatment well described in the model

$$\begin{aligned} \langle 2 \rangle &= \frac{|Q_n|^2 - M}{M(M-1)}, \\ \langle 4 \rangle &= \frac{|Q_n|^4 + |Q_{2n}|^2 - 2 \cdot Re[Q_{2n}Q_n^*Q_n^*]}{M(M-1)(M-2)(M-3)} \\ &- 2\frac{2(M-2) \cdot |Q_n|^2 - M(M-3)}{M(M-1)(M-2)}, \\ c_n\{4\} &= \langle \langle 4 \rangle \rangle - 2 \cdot \langle \langle 2 \rangle \rangle^2, \end{aligned}$$



### Parton escape effects

- Sizable contribution from parton escape, decreases with event multiplicity
- Sign change of  $c_2$ {4} can be related to the parton escape mechanism



### $p_{\mathsf{T}}$ differential elliptic flow for charge particle

- Sizable elliptic flow induced by parton level evolutions
- Hadronic interactions generally reduce the flow magnitude
- Negligible flow with only hadronic scattering or no FSI

$$p_n = \sum_{i=1}^{m_p} e^{in\phi_i}$$
$$\langle 2' \rangle_{\Delta\eta} = \frac{p_{n,A}Q_{n,B}^*}{m_{p,A}M_B}$$

 $d_n\{2, |\Delta\eta|\} = \langle \langle 2' \rangle \rangle_{\Delta\eta}$ 

$$v_n^{sub}\{2, |\Delta\eta|\} = \frac{d_n\{2, |\Delta\eta|\} - k \cdot d_n^{low}\{2, |\Delta\eta|\}}{\sqrt{c_n\{2, |\Delta\eta|\} - k \cdot c_n^{low}\{2, |\Delta\eta|\}}}$$

Elliptic flow in high multiplicity events (M>100)



## Elliptic flow for identified particles

- Significant mass ordering at low p<sub>T</sub> w/ or w/o low multiplicity subtraction
- Hadronic FSI coupled to parton evolutions further enlarge the mass ordering feature



## Summary

- Collectivity in small systems has been stimulating for new theoretical and experimental developments in QGP studies.
- Further improvements have been implemented in the AMPT framework to reach better description for small system.
- Sub-nucleon fluctuations can be important to understand the collective effects developed in small system collisions.
- Collective flow in pp collisions may be related to the existence of final state parton evolutions.
- Strong mass ordering of identified hadron elliptic flow can be regarded as important signature to expose the parton collectivity in pp collisions.

Thank You!

# Back up

## Elliptic flow in pp collisions

- Sub-nucleon structure provides more realistic multiplicity dependence of elliptic flow in pp collisions
- Negative 4-particle correlation appears with the transport model framework. What is the origin?
- Non-trivial final state cross section dependence revealed in c<sub>2</sub>{4}



#### arXiv:2112.01232

#### pp 13 TeV, charged hadron, 0.3<p\_T<3 GeV/c, $| \bigtriangleup \eta |$ >2

$$C_{2}\{4\} = -2\langle v_{2}^{2} \rangle^{2} + \langle v_{2}^{4} \rangle$$
  
=  $-\langle v_{2} \rangle^{4} + 2\sigma_{v2}^{2} \langle v_{2}^{2} \rangle^{2} + \sigma_{v2}^{2}$   
 $(v_{2} = \langle v_{2} \rangle + \sigma_{v2})$   
 $v_{2}\{4\} = (-c_{2}\{4\})^{\frac{1}{4}}$   
For get the real value of  $v_{2}(4) = (4)$ 





#### Elliptic flow for identified particles



- Average transverse momentum increased due to hadron rescattering
- Proton receives stronger p<sub>T</sub> boost compared to pi/K
- Parton rescattering slightly modifies the spectra



## Space-time structure

pp 13 TeV, N<sub>parton</sub>>600

- T(x, y, b) weighting
  Overlap geometry driven
- 3 quark
  Sub-nucleon fluctuation
- Original AMPT Parton sources aligned in a row



EPJC 81 (2021) 8, 755

#### Final state interaction(FSI) in pp collisions

- Final state interaction effects weak in charge density
- Stronger FSI in high multiplicity events
- Radial flow like contribution from final state hadron interaction



pp 13 TeV, hadron level

EPJC 81 (2021) 8, 755

## Collectivity in small system





Event multiplicity (fixed size)

NPA 982 (2019) 92 arXiv:1807.07191

## Collectivity in small system with AMPT

pA collective flow well described by AMPT



PRL 113 (2014) 252301 arXiv:1406.2804

## A multi-phase transport model (AMPT)



PRC 72 (2005) 064901 Nucl.Sci.Tech. 32 (2021) 113

QPT2023









- System size dependence from pA to AA implemented via the local thickness scaling
- Charged hadron productions across different systems well described
- No more system dependent free model parameters



#### PRC 104 (2021) 1, 014908

## Sub-nucleon spatial fluctuations

٠

picture



Rept.Prog.Phys. 84 (2021) 082301

## Initial geometry configuration for pp

Proton substructure 
$$\rho(r) = \frac{1}{8\pi R^3} e^{-r/R}$$

- Overlap function T(x,y,b) weighting method  $T(x,y,b) = \int \rho_{p,1}(x - b/2, y, z)\rho_{p,2}(x + b/2, y, z)dz$
- Constituent quark method (3 quark) Glauber modeling with 3 quark participants Collision criteria  $d < \sqrt{\sigma_{cc}/\pi}$

T(x,y,b) weighting



3 quark constituent



#### Original AMPT spatial structures

- Target/projectile string Target/projectile position
- Independent string
  Mid-point position



## **PYTHIA8** initial conditions

- PYTHIA8 initial conditions: modern parton distribution function, multiple parton interaction (MPI) based string system
- Possible to compare parton transport and inter-string effects on the same basis



Final particle spectra

#### Parton escape effects

