The 15th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT 2023)

Machine Learning for QCD matter: from Inverse Problem to Generative models

Lingxiao Wang(王凌霄) (FIAS)

Prog.Part.Nucl.Phys. 104084(2023); Phys. Rev. D 103, 116023, Phys. Rev. C 106, L051901, Phys. Rev. D 107, 083028, Phys. Rev. D 106, L051502; Chin. Phys. Lett. 39, 120502, Phys. Rev. D 107, 056001, arXiv: 2309.17082.

Collaborators: Kai Zhou(FIAS), Shuzhe Shi(THU), Tetsuo Hatsuda(RIKEN), Gert Aarts(Swansea Uni.), ...

Dec 18, 2023, QPT 2023

- Machie Learning for QCD Matter
- Inverse Problems
 - Data-Driven Learning
 - Physics-Driven Learning
- Generative Models
 - Generating Samples
 - **Diffusion Models**
- Outlooks

Outline

Generated by ChatGPT-4 + DALL·E

QCD Matter

Vacuum

Exploring QCD matter in three "labs",

- Heavy-lon Collisions : compress matter to high-T and high- $\mu_{\mathbf{B}}$
- Neutron Star : dense matter, merger events at low-T and high- $\mu_{\mathbf{B}}$
- Lattice QCD : numerically solve QCD Lagrangian at finite-T and $\mu_{\rm B} \sim 0$

L. Wang

Lattice QCD © Derek Leinweber/CSSM/University of Adelaide

Why Machine Learning?

Vacuum

Baryon Chemical Potential

- •Lattice QCD : Computationally consuming! Physics extraction!

L. Wang

•Heavy-lon Collisions : Large number of data! Complicated simulations! •Neutron Star : Accumulating observations! Poor signal-noise ratio!

What is ML?

L. Wang

Geoffrey Hinton

Machine Learning (ML) is a subset of artificial intelligence that involves the creation of algorithms that allow computers to learn from and make decisions or predictions based on data. It's essentially a way for computers to "learn" from data without being explicitly programmed to do so.

- ChatGPT-4

Big Data + Deep Models GPU

Successful Deep Learning!

Machine Learning and Inference

Inverse Problems

L. Wang

Heavy-Ion Collisions

Phys. Rev. C 106, L051901; Phys. Rev. D 103, 116023

7

QPT 2023

$f_{\theta}: X \to Y$

L. Wang

Physics

Model Parameters/ Properties/States

Inverse Mapping, f_{θ}

$f_A: X \to Y$

Universal Approximation Theorem (1989, 1991)

L. Wang

A feed-forward network with a single hidden layer containing a *finite number of neurons* can approximate arbitrary continuous functions.

AutoEncoder

Convolutional Neural Network

Graph Neural Network

L. Wang

QMC data

1 hidden layer with 20 neurons

Input 5X5

L. Wang

Hydro data

CNNs+DNNs

Input 15X48

L. Wang

QPT 2023

Our Current Works

L. Wang

Learning dynamics of stochastic processes from configurations

Our Current Works

L. Wang

Neural networks for detecting CME

Phys. Rev. C 106, L051901(Letter)

with Yuan-Sheng, Xu-Guang and Kai

0%+5%(10%) Model traned on differnt data-set with charge seperation fraction, f = 5%(10%)

Au + Au $\sqrt{s_{NN}}$ = 200 GeV, centrality 40–50%

$\hat{\theta} = \arg \max_{\theta} \{ p(X \mid \theta) \}$

L. Wang

Physics

Model Parameters/ Properties/States

L. Wang

Physics Parameters are Finite EoS, Wave-Function, Potential,

Inference is Easy-To-Compute ODEs, PDEs, Simulations, ...

$\hat{\theta} = \arg \max_{\theta} \{ p(X \mid \theta) \}$

Deep Neural Network represented Physics, f_{θ}

L. Wang

Flexible Representation

Back-Propagation

Easy-To-Compute on GPUs

1. Building Neutron Star EoS

Tolman–Oppenheimer–Volkoff equations

$$\begin{cases} \frac{dP}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2}\left(1 + \frac{P(r)}{\varepsilon(r)}\right)\left(1 + \frac{4\pi r^3 P(r)}{m(r)}\right)\left(1 - \frac{2G}{r^2}\right) \\ \frac{dm(r)}{dr} = 4\pi r^2 \varepsilon(r) \end{cases}$$

EoS $P(\varepsilon) = 0$

Core $r = 0, \varepsilon(r = 0) = \frac{\varepsilon_c}{r}, P(r = 0) = P(\frac{\varepsilon_c}{r})$ Surface $r = R, \varepsilon(r = R) \simeq 0, M = \int 4\pi r^2 \varepsilon(r) dr$ M, R

Pressure — Gravity

L. Wang

-lydrostatic condition in each shell (dr)

Nat. Rev. Phys. 4, 237-246 (2022)

L. Lindblom, A.J., 398, 569 (1992). If the whole M(R) is known, it's well-defined problem.

1. Building Neutron Star EoS

L. Wang

Tolman–Oppenheimer–Volkoff equations

1. Building Neutron Star EoS

L. Wang

Phys. Rev. D 107, 083028; JCAP08 (2022) 071

1. Building Neutron Star EoS

Module A. NN EoS

L. Wang

A Trainable Neural Network

Phys. Rev. D 107, 083028; JCAP08 (2022) 071

NS crust: **DD2**, inner: $P_{\theta}(1.1\rho_{\text{sat}} \le \rho)$

 \sim

1. Building Neutron Star EoS

Module B. TOV eq. Solver

A **Pre-Trained** Neural Network

L. Wang

Phys. Rev. D 107, 083028; JCAP08 (2022) 071

In-set testing data-set

Training data-set 300,000 polytropic EoS functions with 3 low density models

$$P = K_i \rho^{\Gamma_i}, \quad i = [1,5], \quad 1.1 \rho_{sat} \le \rho \le 7.4 \rho_{sat}$$

1. Building Neutron Star EoS

Blue dots: NN results, Fujimoto-Fukushima-Murase Yellow and Green dashed lines: Bayesian Approaches

Phys. Rev. D 107, 083028

18 (M_i, R_i) , sample size = 10k
causality ($d\epsilon/dp < 1$)
Maximum mass $\geq 1.9 M_{\odot}$

$\geq 1.9 M_{\odot}$	1-
	10 Radius (km)
$Mass(M_{\odot})$	Radius(km)
$1.42{\pm}0.49$	11.71 ± 2.48
$1.08 {\pm} 0.30$	8.89±1.16
$1.44{\pm}0.48$	$12.04{\pm}2.30$
1.41 ± 0.54	11.75±3.47
1.25±0.39	11.48 ± 1.73
1.23 ± 0.38	9.80±1.76
1.60±0.31	10.36 ± 1.98
1.79±0.26	11.47±1.53
$1.76 {\pm} 0.26$	11.31 ± 1.75
$1.59{\pm}0.24$	$10.40{\pm}1.56$
$1.59 {\pm} 0.37$	10.44 ± 2.17
$1.70 {\pm} 0.30$	11.25 ± 1.78
$1.18 {\pm} 0.37$	10.05 ± 1.16
$1.37 {\pm} 0.37$	$10.87 {\pm} 1.24$
$1.90 {\pm} 0.30$	12.40 ± 0.40
$1.44{\pm}0.07$	13.60 ± 0.85
$1.44{\pm}0.15$	13.02±1.15
$2.08 {\pm} 0.07$	13.70±2.05
	$\geq 1.9 M_{\odot}$ $Mass(M_{\odot})$ 1.42 ± 0.49 1.08 ± 0.30 1.44 ± 0.48 1.41 ± 0.54 1.25 ± 0.39 1.23 ± 0.38 1.60 ± 0.31 1.79 ± 0.26 1.76 ± 0.26 1.76 ± 0.26 1.59 ± 0.24 1.59 ± 0.24 1.59 ± 0.37 1.70 ± 0.30 1.18 ± 0.37 1.90 ± 0.30 1.44 ± 0.07 1.44 ± 0.07 1.44 ± 0.15 2.08 ± 0.07

2. Reconstructing Spectral Function

Correlation Function

2. Reconstructing Spectral Function

L. Wang

Kallen – Lehmann(KL) representation

2. Reconstructing Spectral Function

L. Wang

Phys. Rev. D 106, L051502

2. Reconstructing Spectral Function

NN : $(\rho_1, \rho_2, \dots, \rho_{N_o})$

Differentiable variables : Network weights $\{\theta\}$	D
Adam, L2 ($\lambda = 10^{-3} \rightarrow 10^{-8}$), Smoothness ($\lambda_{s} = 10^{-4} \rightarrow 0$)	A
width = 64 and depth = 3 with bias	W

L. Wang

Phys. Rev. D 106, L051502

NN-P2P : $\rho(\omega)$

Differentiable variables : Network weights $\{ heta\}$

Adam, L2 ($\lambda = 10^{-6} \rightarrow 0$)

width = 64 and depth = 3 with bias

Regularization

L2 : $\lambda \mid \theta \mid_2^2$

Smoothness: $\lambda_s \sum_{s}^{N_{\omega}} (\rho_i - \rho_{i-1})^2$

Gradient-based Optimization

Adam:
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Physical Prior

Positive-defined condition(for hadrons): Softplus $log(1 + e^x)$

2. Reconstructing Spectral Function

 $\varepsilon = 10^{-3}$ Mock Test I. 1.0 (3) 0.5 $\rho^{(\text{BW})}(\omega) = \frac{4A\Gamma\omega}{\left(M^2 + \Gamma^2 - \omega^2\right)^2 + 4\Gamma^2\omega^2}$ $A = 1.0, \Gamma = 0.5, M = 2.0$ 10 5 0.75 (ເງ ອ $A_1 = 0.8, A_2 = 1.0, \Gamma_1 = \Gamma_2 = 0.5$ $M_1 = 2.0, M_2 = 5.0$ 0.25 0.00 10 U С ω Ground Truth

L. Wang

Phys. Rev. D 106, L051502

32

2. Reconstructing Spectral Function

L. Wang

Phys. Rev. D 106, L051502

1. Single-peak functions

2. Non-positive-definited SPs

3. Lattice QCD mock data

Thermal (details see arXiv:2110.13521)

$$G(\tau,T) = \int_0^\infty \frac{d\omega}{2\pi} K(\omega,\tau,T)\rho(\omega,T)$$

$$K(\omega, \tau, T) = \frac{\cosh \omega (\tau - \frac{1}{2T})}{\sinh \frac{\omega}{2T}}$$

33

3. Extracting Nuclear Force

L. Wang

Nambu-Bethe-Salpeter (NBS) wave function

$$\psi_{NBS}(\vec{r}) = \langle 0|N(\vec{r})N(\vec{0})|N(\vec{k})N(-\vec{k}),in\rangle$$

$$\simeq e^{i\delta_l(k)}\sin(kr - l\pi/2 + \delta_l(k))/(kr)$$

(at asymptotic region)

N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007)

Local Approx. **Gradient Expansion**

Nulcear Force

$$(k^2/m_N - H_0) \psi_{NBS}(\vec{r})$$

=
$$\int d\vec{r}' U(\vec{r}, \vec{r}') \psi_{NBS}(\vec{r}')$$

(Schrodinger eq.)

3. Extracting Nuclear Force

Separable Potential

 $U(\mathbf{r},\mathbf{r}') \equiv \omega \nu(\mathbf{r})\nu(\mathbf{r}'), \quad \nu(\mathbf{r}) \equiv e^{-\mu r}$

$$\phi_k^0(r) = \frac{e^{i\delta_0(k)}}{kr} \left[\sin\{kr + \delta_0(k)\} - \sin\delta_0(k)e^{-\mu r} \left(1 + \frac{r(\mu^2 + k^2)}{2\mu}\right) \right]$$
$$k \cot\delta_0(k) = -\frac{1}{4\mu^2} \left[2\mu(\mu^2 - k^2) - \frac{3\mu^2 + k^2}{4\mu^3}(\mu^2 + k^2)^2 + \frac{(\mu^2 + k^2)^4}{8\pi m\omega} \right]$$

Nambu-Bethe-Salpeter (NBS) wave function

$$\phi_{\mathbf{k}}(\mathbf{r})e^{-W_{\mathbf{k}}t} \equiv \langle 0 \ N(\mathbf{x} + \mathbf{r}, t)N(\mathbf{x}, t) \ NN, W_{k} \rangle$$

$$(E_{k} - H_{0})\phi_{\mathbf{k}}(\mathbf{r}) = \int d^{3}r' U(\mathbf{r}, \mathbf{r}')\phi_{\mathbf{k}}(\mathbf{r}')$$

$$\mathscr{L} = \sum_{k} \int d^{3}r \left[(E_{k} - E_{k}) - \frac{k^{2}}{2m}, \ m = \frac{m_{N}}{2} \right]$$

L. Wang

in preparation (with HAL QCD)

Neural Network Hadron Force

$$U_{\theta}(\mathbf{r}, \mathbf{r}') = \omega \exp(-\mu r) f_{\theta}(r'), \quad f_{\theta}(r) \equiv V_{NN}(r)$$

3. Extracting Nuclear Force

Yokawa Potential

L. Wang

$$\left(-\frac{\nabla^2}{2m} + V(r)\right)\psi(\mathbf{r}) = E\psi(\mathbf{r}) \qquad V(r) = -\alpha \frac{e^{-\mu r}}{r}$$

in preparation (with HAL QCD)

Neural Network Hadron Force

 $V_{NN}(r) \equiv f_{\theta}(r)$

Other Works

Other Works

L. Wang

- - -

Summary I

- Inverse Problems
 - Data-driven learning
 - Physics-driven learning
 - Physics-driven deep learning
 - Neural network representations
 - Gradient-based optimization
- Future works

L. Wang

- Nuclear Matter EoS
- Spectroscopy [github1, github2]
- NN-Nulcear Force

$\hat{\theta} = \arg \max_{\theta} \{ p(X \mid \theta) \}$

Generative Models

Generative Models

Generative models → Underlying Distributions in Data

 \rightarrow Physical Distribution, Sampling via Generative Models

Global Sampling

Fast and Independent Sampler

Lattice QCD © Derek Leinweber/CSSM/University of Adelaide

Heavy-Ion Collisions © 2010 CERN

Maximum Likelihood Estimation(MLE)

$$\max_{\theta} \prod_{i=1}^{N} p(\mathbf{x}_i \mid \theta)$$

L. Wang

I. Goodfellow, arXiv:1701.00160 (2017)

1. Spin Configurations

L. Wang

Autoregressive Networks model Likelihood $q_{\theta}(s)$ explicitly

Chinese Phys. Lett. 39, 120502 (2022)

Kosterlitz-Thouless(KT) transition, with (Vortices)

Probability Distributions from CANs

Vortices

2. Field Configurations

Fourier Flow Model

More priors. More stable! for training neural networks

$$X_{k} = \sum_{n=0}^{N-1} e^{-i\frac{2\pi}{N}kn} x_{n}$$

Discrete Fourier transformation (DFT)

L. Wang

Phys. Rev. D 107, 056001

Quark-gluon plasma under electromagnetic fields

L. Wang

Lingxiao Wang via Dreamstudio

Quark-gluon plasma under strongly rotating

- Forward diffusion process gradually adds noise to input
- Reverse denoising process learns to generate data by denoising
- Train Probabilistic Models
 to learn how to convert a simple
 distribution to a target distribution

Reverse denoising process (generative)

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

Data

Data

- Forward Diffusion SDE
 - **Drift term**: pulls towards mode
 - **Diffusion term**: injects noise
- Reverse Generative Diffusion SDE
 - Drift term is adjusted with a "Score Function"
 - Represent the score function with **neural networks**

L. Wang

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

dφ $(\phi,\xi) + g(\xi)\eta(\xi)$ $d\xi$

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t) \nabla_{\phi} \log p_t(\phi) \right] + g(t)\bar{\eta}(t)$$

Anderson, in Stochastic Processes and their Applications, 1982

Stochastic Quantization

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau)$$

 $\langle \eta(x,\tau) \rangle = 0, \quad \langle \eta(x,\tau)\eta(x',\tau') \rangle = 2\alpha\delta(x-x')\delta(\tau-\tau')$ τ : fictitious time, α : diffusion constant

Fokker-Planck equation

$$\frac{\partial P[\phi,\tau]}{\partial \tau} = \alpha \int d^n x \left\{ \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{\delta S_E}{\delta \phi} \right) \right\} P[\phi,\tau]$$

Equilibrium solution (long-time limit),

$$P_{\text{eq}}[\phi] \propto e^{-\frac{1}{\alpha}S_E[\phi]}$$

• Set the diffusion constant as $\alpha = \hbar$

L. Wang

$$P_{eq}[\phi] \sim e^{-\frac{1}{\hbar}S_E[\phi]} = P_{quantum}[\phi]$$

Parisi G. and Wu Y. S., Sci. China, A 24, ASITP-80-004 (1980).

Thermal equilibrium limit \rightarrow Quantum distribution

1. No need gauge-fixing! 2. Can handle fermionic fields naturally \rightarrow (Complex Langevin method)

P. H. Damgaard and H. Hüffel, Stochastic Quantization, Phys. Rept. 152, 227 (1987). M. Namiki, Basic Ideas of Stochastic Quantization, PTPS 111, 1 (1993). G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, and I.-O. Stamatescu, Eur. Phys. J. A 49, 89 (2013).

DMs as SQ

L. Wang

Diffusion models(Reverse SDE): $\frac{d\phi}{dt} = -g(t)^2 \nabla_{\phi} \log p_t(\phi) + g(t)\bar{\eta}$ • Define: $\tau \equiv T - t(d\tau \equiv -dt)$ $\frac{d\phi}{d\tau} = g_{\tau}^2 \nabla_{\phi} \log q_{\tau}(\phi) + g_{\tau} \bar{\eta}$ $\phi(\tau_{n+1}) = \phi(\tau_n) + g_\tau^2 \nabla_\phi \log q_{\tau_n} [\phi(\tau_n)] \Delta \tau + g_\tau \sqrt{\Delta \tau} \bar{\eta}(\tau_n)$ introducing Noise scale: $\langle \bar{\eta}^2 \rangle \equiv 2\bar{\alpha}$, time scale: $g_{\tau}^2 \Delta \tau$ • FP equation $\frac{\partial p_{\tau}(\phi)}{\partial \tau} = \left[d^n x \left\{ \frac{g_{\tau}^2}{\sigma_{\tau}^2} \bar{\alpha} \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{1}{\bar{\alpha}} \nabla_{\phi} S_{\text{DM}} \right) \right\} p_{\tau}(\phi) \right]$

 $\nabla_{\phi} S_{\mathsf{DM}} \equiv -\nabla_{\phi} \log q_{\tau}(\phi)$

 $p_{eq}(\phi) \propto e^{-\frac{S_{DM}}{\bar{\alpha}}}$

 $p_{\tau=T}(\phi) \to P[\phi, T]$

 $O(\bar{\alpha}) \sim O(\hbar)$

The reverse mode of **a well-trained diffusion model** at $\tau \rightarrow T$ serves as the stochastic quantization for the input

DM for Scalar Field

L. Wang

<u>arXiv: 2309.17082</u>

55

Summary

- **Generative Models** ullet
 - Generating Samples
 - **Spin system**: Continuous autoregressive networks
 - **Field**: Fourier-Flow model
 - **Diffusion Models** lacksquare
 - Stochastic Quantization scheme
- Future works

- Diffusion models as SQ
- 2+1D Gauge Field
- Complex Langevin Method(CLM) for Fermions

Representation Learning

$g_{\theta}: X \to Y$ $f_{\theta}: Y \to X$

Physics

Model Parameters/ Properties/States

L. Wang

Inverse Mapping, g_{θ}

Representation Learning

Representation Learning

L. Wang

H. Huang, B. Xiao, Z. Liu, Z. Wu, Y. Mu, and **H. Song**, Phys. Rev. Res. **3**, 023256 (2021)

Rapidly Developing

12.15 Poster Session

Exploring percolation phase transition in the Ising model with machine learning

12.17 morning

9:20-9:40 Deep learning jet modifications in heavy-ion collisions

12.18 morning

L. Wang

Searching CEP in a holographic model with machine learning 9:00-9:20

Thank You !

ML meets Physics, Opportunities and Challenges

50 =