Qi-Peng Hu, Ya-Xian Mao, Guang-You Qin

A special 200th session of High-Energy Nuclear Physics in China (HENPIC)

December 15, 2023, Zhuhai

Jets and heavy flavor

Hard Probes: jets and heavy flavor

- Many observables can be studied in the HP sector
- So far there are many many exciting and interesting results
- but ...
 - we must keep in mind that the study of different effects in a complementary way must yield consistent picture
 - \rightarrow focus in this talk: discuss existing experimental and theoretical results which not so consistency or need further improvements/thoughts

Sketch: d'Enterria: arXiv:1207.4362

Final state

Detector

- Flavor dependence of jet quenching
- Medium response
- R-dependence of jet quenching
- Full jet and jet substructure
- Hadron chemistry & hadronization
- Extract medium properties
- Jet quenching in small systems

Outline

Flavor dependence of parton energy loss

PRC 91 (2015) 054908; PRC 94 (2016) 014909; PLB 805 (2020) 135424

- Flavor dependence involves: a) color charge differences; b) mass dependence
- loss

$$> E_{\text{loss}}^{\text{light-quark}} > E_{\text{loss}}^c > E_{\text{loss}}^b$$

Color charge dependence of jet energy loss

- initiated jets
- dependence of parton-medium interaction (only true below p_T < 200 GeV, why?)
- Very small differences between photon and π^0 -tagged jets modifications at RHIC energy

Quark-initiated jets lose less energy and shows weaker dependence on the jet p_T compared to gluon-

Photon-tagged (quark) jets being significantly less suppressed than inclusive jets \rightarrow color factor

Color charge dependence of energy loss

Flavor dependence of radiation:

R_{AA} $E_{\rm loss}^{\rm gluon} > E_{\rm loss}^{\rm light-quark} > E_{\rm loss}^c > E_{\rm loss}^b$ **ATLAS** Preliminary $C_{\rm F} = 4/3$ Data Takacs et al. LIDO ($\mu = 1.3 - 1.8\pi T$) quark jet SCET_G (g₄=1.8-2.2) -1.8 $R_{AA}^{\gamma\text{-jet}}/R_{AA}^{\text{inclusive jet}}$ CoLBT JEWEL $C_A = 3$ gluon jet 1.2 0.8 160 60 80 100 140 120 Jet p_{_} [GeV]

Energy loss depends on color charge

Н_{АА}

Flavor dependence of radiation:

 $> E_{\text{loss}}^{\text{light-quark}} > E_{\text{loss}}^c > E_{\text{loss}}^b$

Energy loss depends on color charge (and mass of parton?) Energy loss predicted to depend also on quark mass: reduction of gluon radiation from heavy quarks at

small angles —"Dead Cone" effect

Н_{АА}

Flavor dependence of radiation:

- small angles —"Dead Cone" effect
- Less suppression of b-jets than inclusive jets in most central collisions

Energy loss predicted to depend also on quark mass: reduction of gluon radiation from heavy quarks at

Mass dependence of energy loss is found between B and inclusive hadrons/ jets, but not charm and light flavors

In pp: dead cone effect exposed by ALICE

Nature 605 (2022) 7910 • Reduction of gluon radiation from heavy quarks at small angles $p_{\text{T,inclusive jet}}^{\text{ch,leading track}} \ge 2.8 \text{ GeV/}c$ pp **√***s* = 13 TeV PYTHIA 8 LQ / inclusive no dead-cone limit ALICE Data $k_{\rm T} > \Lambda_{\rm QCD}$, $\Lambda_{\rm QCD} = 200~{\rm MeV}/c$ charged jets, anti- k_{T} , R=0.4PYTHIA 8 SHERPA LQ / inclusive SHERPA C/A reclustering $|\eta_{|ab}| < 0.5$ no dead-cone limit 0.37 0.22 0.08 0.22 0.08 0.22 0.14 0.14 0.14 $R(\theta)$ $5 < E_{\text{Radiator}} < 10 \text{ GeV}$ 10 < E_{Radiator} < 20 GeV $20 < E_{\text{Radiator}} < 35 \text{ GeV}$ 1.5 View on CDS small angle largeangle Dead-cone eff radiation suppressed inside a cone with $\theta_{+} = m/E$ C D. Dominguez / CERN 0.5 2.5 2.5 1.5 1.5 2 1.5 2 2

ALI-PUB-493419

- of jets that contain a soft D^0 meson.
- D-tagged jets in pp does show the dead-cone effect! where is it in AA?

First direct observation of dead-cone effect in pp using jet iterative declustering and Lund plane analysis

In pp: dead cone effect exposed by ALICE

• Reduction of gluon radiation from heavy quarks at small angles

- of jets that contain a soft D^0 meson.
- D-tagged jets in pp does show the dead-cone effect! where is it in AA?

First direct observation of dead-cone effect in pp using jet iterative declustering and Lund plane analysis

Medium response to propagating parton

Medium response to propagating parton

- energy loss as characterized by γ -jet asymmetry

Medium response to propagating parton

- energy loss as characterized by γ -jet asymmetry

Medium response: redistribution of lost energy

Recoil jet $\Delta \varphi$ **modifications:** angular broadening

- Broadening of h-jet azimuthal correlations for soft jets
- Similar observation was also found by STAR for γ/π^0 triggered recoil jets
- Hybrid model w/ wake captures the yield enhancement at low p_T but not broadening
- JEWEL with recoil on captures both features

Recoil jet and inclusive jet modification: JEWEL comparison

• JEWEL with recoil on can describe I_{AA} but not R_{AA}

• No model (with/without medium response) can describe all measured observables

R dependence of jet quenching

- loss mechanisms

- Jet-fluid model w/ hydrodynamic wake can reproduce the R-dependence of experimental Run I ATLAS results

R dependence of jet R_{AA} can be sensitive to medium response effect and help to disentangle energy

competing effect between the amount/how energy redistributed and ability to recover it

Hybrid model predicts different (even reversed) R-dependence of jet R_{AA} due to medium response

R dependence of jet R_{AA}: experimental data

No strong R dependence for very high pT jets larger radius more suppressed

larger radius **less** suppressed

R dependence of jet RAA: experimental data

No strong R dependence for very high pT jets larger radius **more** suppressed

- Not exactly the same observables: R_{AA} vs. R_{CP}
- Different types of jets: full vs. charge
- Different centre-of-mass energy and phase-space
- Larger systematics in ALICE

larger radius **less** suppressed

→More detailed comparison and future studies are needed

R_{AA} - substructure interplay

- Large rg jets are more suppressed
- At fixed jet p_T , large R-jet has higher probability to have large θ_g splittings

HENPIC200, Zhuhai, 2023/12/15

R_{AA} - substructure interplay

- Large rg jets are more suppressed
- At fixed jet p_T , large R-jet has higher probability to have large θ_g splittings

 \rightarrow important to study the rg dependent R_{AA} with different R

Jet substructure modifications

- - Energy loss makes the jets narrower?
 - selection bias
 - q/g-fraction changes

Jet substructure modifications

- - Energy loss makes the jets narrower?
 - selection bias
 - q/g-fraction changes

 $\rightarrow Z/\gamma$ -jet substructure can avoid selection bias and q/g fraction differences

Baryon to meson enhancement around jets

Hadron chemistry and charm quark fragmentation

- B/M ratio inside jet cone doesn't show a peak as inclusive case at intermediate p_T
- Charmed-jet fragmentation is slightly different when containing a strangeness quark hadrons
- Charm quarks have a softer fragmentation into Λ_c^+ baryons compared to D⁰ mesons

Heavy flavor hadronization: B/M ratio

HF hadronization with strange-quark content

- described by model predictions

Path length dependence of jet energy loss

- of plane path length differences
- - consistent with stronger suppression along the out-of-plane axis

Selecting specific event shapes according to their anisotropy (q_2) allows to maximize in plane and out

More suppressed jet yield ratio of out-of-plane relative to in-plane for larger q_2 events for low p_T jets

4097	
-	
5	
П	
	_
	-
	_
U	120
3eV/	<i>C</i>)

Path length dependence of jet energy loss

- A peak structure observed at intermediate x_{l} indicates the suppression of symmetric dijets

Back-to-back jet pairs provide access to asymmetric energy loss due to unequal path lengths in QGP

Path length dependence of jet energy loss

- A peak structure observed at intermediate x_{l} indicates the suppression of symmetric dijets
- Similar observation for jet shapes measurements in CMS using dijets events

Back-to-back jet pairs provide access to asymmetric energy loss due to unequal path lengths in QGP

subleading jets from asymmetric dijet selection (larger traversing path in QGP) are more quenched

Extract medium properties from hard probes

Jet quenching in small collision systems?

- hard processes

No indication of jet quenching in small collision systems

No enhancement (suppression) observed for Near (Away) side in pp and p-Pb collisions

HENPIC200, Zhuhai, 2023/12/15

Jet quenching not observed in small systems

No significant energy loss observed so far

lacksquare

Strong change of behavior of R_{AA} beyond 80% centrality is reproduced considering biases in event selection and collision geometry, and o nuclear modification \rightarrow not a medium effect!

Jet quenching not observed in small systems

No significant energy loss observed so far

 \bullet

Strong change of behavior of R_{AA} beyond 80% centrality is reproduced considering biases in event selection and collision geometry, and o nuclear modification \rightarrow not a medium effect!

Jet quenching not observed in small systems

No significant energy loss observed so far

 \bullet

Strong change of behavior of R_{AA} beyond 80% centrality is reproduced considering biases in event selection and collision geometry, and o nuclear modification \rightarrow not a medium effect! Open question: when (which system size) does energy loss sets in?

Summary and discussions

- Instead of a summary, a short list for discussions (not complete of course):
 - Flavor/Mass dependence: can quenching of jets and hadrons with different flavors/ masses be explained by one single model?
 - Medium response: how to distinguish medium response and medium-induced (soft) radiation? what are the decisive (and sensitive) signals?
 - Jet broadening or narrowing: why broadening is observed in correlation analyses, but not in jet substructure measurements? can this be understood consistently?
 - R-dependence of jet quenching: the tension among ALICE/ATLAS/CMS has been solved? how do jet substructure and medium response interplay in large R jets?
 - Heavy flavor chemistry and hadronization: do we fully understand coalescence with different quark content?
 - Jet quenching in small systems: what part of the jet is most sensitive to jet-medium interaction? can event-engineering technique help?

Backup