Beam Test of Sci-W ECAL and AHCAL Prototypes

Yunlong Zhang

State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

On behalf of CEPC Calorimeter working group

Outline

Motivation

Calorimeter prototypes introduction

Beam test at CERN

> Summary

Motivation

Circular Electron Positron Collider (CEPC)

 $E_{cm} \approx 240 GeV$, luminosity $\sim 2 \times 10^{34} cm^{-2} s^{-1}$ can also rum at the Z-pole Precision measurement of the Higgs boson (and the Z boson)

$e^+e^- \rightarrow ZH$

Requirements of CEPC Calorimeter

• ILD-like detector with additional considerations.

Challenges:

- Momentum: $\sigma_{1/p} < 5 \times 10^{-5} \text{ GeV}^{-1}$
- > Impact parameter: $\sigma_{r\phi} = 5 \oplus 10 / (p \cdot \sin^{\frac{1}{2}}\theta) \mu m$

> Jet energy:

$$\frac{\sigma_E}{E} \approx 3 - 4\%$$

- The Particle Flow Algorithm (PFA) calorimeter concept was proposed
 - High granularity
 - Good track finding
 - Good energy resolution

Sampling Calorimeter

Calo	Sampling No.	Sensitive detector	Absorber	Granulari ty	Electroni cs	Absorb length	Energy Resolution	weight
Sci-W ECAL	32	PSD+SiPM	W-Cu	5mm×5 mm	SP-2E	22 X ₀	16%@ 1 GeV	0.3 T
AHCAL	40	PSD+SiPM	Fe	40mm×4 0mm	SP-2E	4.7 NIL	60%@ 1 GeV	5.0 T

PFA Calorimeter prototype

Brief review of last year beam test

Two weeks beam test at H8 of SPS

- > The H8 beam line is a high-energy, high-resolution secondary beam line.
- > The maximum momentum that can be transported in the experiments is 400 GeV/c protons
- > or secondary mixed hadron beams within the range 10-360 GeV/c.
- > the electron beams with variable purity (10 99 %) are also possible. The maximum $\Delta p/p$ acceptance of the line is 1.5%.

					SPS: Oo	tober 20)22		CERN	
chedule i	issue date: 30-Ma	y-2022	Versio	n: 1.10					'YA	
		Mon Tue W 26 27 2 Sep Sep Se	VedThuFriSatSun28293012epSepSepOctOct	Mon Tue W 3 4 4 Oct Oct O	/edThuFriSatSun56789OctOctOctOctOct	Mon Tue Wed Thu Fr 10 11 12 13 14 Oct Oct Oct Oct Oct	Sat Sun Mon Tue 15 16 17 18 t Oct Oct Oct	Wed Thu Fri Sat Sun 19 20 21 22 23 Oct Oct Oct Oct Oct	Mon Tue Wed Thu Fri Sat Sun 24 25 26 27 28 29 30 Oct Oct Oct Oct Oct Oct Oct Oct	
Week		39		40		41		42	43	
Machi	ne	85	186	8h	185			186		
	T2 - H2	Calice Sdhcal	A. Ariga	NA65	CMS H D. Lazic PPE172	IGCAL Y. Itow PPE172	LHC	H. Schindler	LHCb ECAL	
	T2 - H4	V. Gninen	ko 2E144	NA64e	EB. Holzer		Place-holder	M.R. Jäkel, E. Oliv PPE134, PPE154	eri GIF RD51	
rth Area	T4 - H6 main user	CMS PIXELS	ATLAS A. Rummler PPE146	ITK PIXEL	ATLA A. Rummler PPE156	S AFP Dannhein PPE156	MONO LITH	E. Figueras	RD50 NA62 H. Danielsson PPE136	
	T4 - H6 parallel use	seP hybrid	ATLAS AFF A. Rummler PPE146	P BCM	ATLAS A. Rummler PPE146	ITK PIXEL ATL V. DaoD. PPE146, PI	AS MALTA EP PIXEI Dannheim PE156	NA62 ATLAS H. Danielesser A. D H. E136, PPE146	HGTDEP hybrid ATLAS HGTD E. Gkougkousis	
ž	T4 - H8 UA9 Totem W. Scandale PPE128		UA9	H. Schindler, N. Ner PPE128, PPE138, PPE	LHCb C i 158, PPE168	MS MTD (S 200M)	J. Liu, E. Scompari	Calice ScW ECAL NA60+		

Transport

In the middle of Sep. 2022, The detectors were sent to CERN from Hefei. The total weight is 10.6 tons.
On Oct. 14 2022, the detectors arrived at CERN.

Beam test

- Beam Test
 - Muon+
 - 160 GeV/c, 108 GeV/c
 - <mark>5 million</mark>
 - Pion+
 - <u>10 120 GeV/c</u>
 - 17 million
 - Positron
 - 10 120 GeV/c
 - 3 million

beam purity is poor

CEPC AHCAL Prototype

CALI

Stored in CERN

- After this beam test, We have stored the detectors in CERN Meyrin site
 - Nov.8, stored in bat.190

Beam Test in 2023

- Major motivations
 - Much Better beam purity at SPS-H2
 - Study low-energy in 1-10 GeV at PS
 - Update some problems of last year
- CERN PS/SPS schedule in 2023
 - SPS-H2: Apr. 24 May 10 (16 days)
 - PS-T9: May 13 31 (15 days)

North Area Schedule v1.3.0 :: Beamlines H2, H4

Similar to H2 and T9

East Area Schedule v1.3.0 :: Beamlines T8, T9, T10, T11 &

2023/6/20

Beam test in SPS H2

- 17/4, The detectors were shipped to bat. 887 of SPS
- The package are the same as last year :-)

ECAL Update

- We have rebuilt two layers in the laboratory to study the problems discovered during last year's testing process
- The ECAL temperature
 - The temperature data in ECAL are disordered last year. This problem is fixed and tested.
- The autogain
 - We think the select thresholds used in 2022 are too low. We calibrate new thresholds for each chip
- ECAL stuck
 - In Beam test of 2022, the ECAL always got stuck and had no data for sometime. We modify a firmware bug and update the hardware.

Load Test

 24/4, after Load test, we obtained beam permission

CALICE ScW-ECAL and AHCAL Experiment

Safety clearance

Experiment Details

ISIEC ID 815

Experiment Name CALICE ScW-ECAL and AHCAL

Beam Line H2

Door (PPE) 172

Counting Room {Empty}

Building Number 887

Calorimeter Test

Calorimeter Test

- DAQ system for ECAL and AHCAL Prototypes
 - ECAL has 30 DIFs, AHCAL has 40 DIFs
 - Using TLU to synchronize two systems

Calorimeter Test

Data Collection and analysis

Beam in SPS H2

- 1 cycle: 34.8 s, 1 spill: 4.8 s
- About 2-3 k events per spill
- Beam size: ~4 cm (FWHM)
- Muon Test
 - Momentum: 100 GeV/c
 - 6 million
- Pion- test
 - 10-120 GeV/c, 350 GeV/c
 - 20 million
- Electron Test
 - 10-250 GeV/c
 - <mark>4.7 million</mark>
- Proton, 350 GeV/c
 - <mark>1 million</mark>

THE REAL PROPERTY AND INC.

Temperature and Humidity

2023/6/21 19

Event display

2023/6/21 20

300

200

100

0

-100

-200

-300

2023/6/21

ECAL energy response to e- and pi-

- In H2, the beam purity is very good
 - electron, 10 GeV/c 250 GeV/c
 - Pi-, 40 GeV/c 350 GeV/c
- In e- beam, only a few pi- contamination
- In pi- beam, there is also a few e- contamination

Low energy pi- in H2

- Low energy pi- are not pure
- 10 GeV/c, most of the events are e-

AHCAL energy response to e- and pi-

 In order to study the AHCAL response to EM composition, we also tested AHCAL with eand pi- both

24

HCAL response to 350 GeV/c pi-

(接近)地表最高能(束流测试)!

Linearity and energy resolution

- The energy linearity is about $\pm 1.5\%$
- The energy resolution is $\frac{57.6\%}{\sqrt{E}} \oplus 2.3\%$

• 12/5, the detectors were shipped to PS T9

27

Calorimeters in PS T9

T09 Beamline

- Two Cherenkov detectors with CO2
 - C1, 16 bars
 - C2, 4 bars
- Two trigger counters

Material in the beam line

Cherenkov detectors

- beam pipe window: 2.8 mm AI (1.4 mm AI at the entrance and exit each) for the high pressure XCET44
- Two Cherenkov detectors: 3.8 m long each, depends on the pressure
- Beam pipe window: 0.4 mm Mylar (0.2 mm for the entrance and exit each) for the low pressure XCET48
- Two plastic scintillator trigger counters
 - 0.6% radiation length each
- Two beam profile monitors (scintillator fiber)
 - 0.5% radiation length each
- <mark>Air</mark>
 - 4.25 m from the last beam profile monitor (XBPF 050/051) to ECAL (Yong test)

Beam in PS T9

- Energy: 0.5 16 GeV/c
- Spill duration: ~ 2.4 sec with 0.4 sec flat-top, typically 1-2 spills / min
- About 2-3 k events per spill
- Typical beam size: ~1-2 cm
 - Muon Test
 - Momentum: 10 GeV/c
 - Pion-test
 - − 1 − 15 GeV/c
 - 8 million
 - Electron Test
 - 0.5 5 GeV/c
 - 2.6 million

Temperature and Humidity

environment

A TAVA AND AND AND

AHCAL DAQ Board

2023/6/21

32

Event display

2023/6/21 33

Suppress e- yield using Absorber

- Take an obstacle in the beam to "absorb" the electrons
 - The secondary e+/- will be bended later

ECAL Energy Response to pi-

35

Edep Entries

Mean

90

Entries

Std Dev

Mean

100

Edep

21687

124.6

117.1

Std Dev

8755 16.69

12.35

ECAL Energy Response to e-

- Take an obstacle as converter to produce electrons
 - Photon incident converter to produce e+/e-

5 GeV/c e- energy deposition in ECAL

5 GeV/c e- energy deposition in AHCAL

HCAL response: pi- Test

15 GeV/c

HCAL response to e-

5 GeV/c e- energy deposition in AHCAL

5 GeV/c pi- energy deposition in AHCAL

2023/6/21

Cherenkov Detector

3 GeV/c e- in AHCAL

- The Cherenkov detectors were used to identify e-, mu-, pi-
- The muon peak disappear after we used the C signals

4 GeV/c e- in AHCAL

Cherenkov Detector

 We also could "see" the mu- and e- events in pi- data

3 GeV/c pi- in AHCAL

4 GeV/c pi- in AHCAL

Final transportation back to China

7/6, shipped to China

Final transportation back to China

17/6, arrived in Hefei

- The two calorimeters has been taking beam test from April 24 to May. 31, the preliminary results show the calorimeters work very well
 - The Sci-W ECAL and AHCAL were tested with pions and electrons from 10 GeV/c to 120 GeV/c (SPS) and 0.5 GeV/c – 15 GeV/c (PS)
 - We collected about 40 million events in this beam test
- We will continue a detailed analysis of the data to further tap the potential of the data

PS-T9 Test

8

11

888888

EE

.

ありがとうございまし Merciàtous Thank you all

1

Cherenkov Detector Threshold

by Takeshita-san)

AHCAL Test with pion+

- The energy response of AHCAL was studied by pions
- The calorimeter could cover the whole shower

2023/6/20

AHCAL Test with pion+

- The Cherenkov detectors in the beam were also used to do the PID.
 - One is low pressure
 - The other is high pressure

Sci-W ECAL Test with Positron

• The e+ test, also the beam has hadrons.

10 GeV e+

40 GeV e+

10 GeV hadron 100-50 position / mm 0-> -50 -100-300 250 0 50 100 150 200 Layer position [mm]

AHCAL Test with Mu+

The thresholds were calibrated using muon beam

2023/6/20