

机器学习在HEPS束线调光上的应用 进展

赵海峰 多学科中心同步辐射技术与应用组/ PAPS-X射线应用系统

2023.06.15

Outline

- → 光束线调光
- → 机器学习在光束线调光中的应用
- → HEPS束线调光ML模型介绍
- → Case.1 反射镜姿态调节
- → Case.2 反射镜面形误差评估
- → 小结和展望

调光面临的困难和挑战:

- ▶ 时间长,
 - 传统的光束线调光算法基于规则或手动调节的 方式进行,需要耗费大量的时间。
- ▶ 快速调节
 - 某些实验可能需要在短时间内对光束进行快速 调节。调光系统需要具备高速响应能力,以实 现快速的光束调节,同时保持调节的精确性和 稳定性。
- > 调光复杂、繁琐
 > 多种器件: VCM、HRM1、HRM2、VFM、 DCM…
 > 多个调节维度: pitch、roll、yaw、 bending、surface error…

机器学习在光束线调光中的应用

→ ML加速追迹/光学模拟@TES@NSLS-II

→ 2-25µm@2-5.5keV

通过ML可以大幅提升束线追迹计算的效率

Nash, B., et al. Journal of Physics: Conference Series. Vol. 2380. No. 1. IOP Publishing, 2022.

机器学习在光束线调光中的应用

→ DNN助力KB镜像差分析@ CARNAÚBA@Sirius

KB镜示意图

使用SRW模拟的光束强度分布和相位分布

像差用Zernike 多项式分解系 数表示

HEPS束线调光ML模型介绍

→ HEPS束线调光ML模型设计

HEPS束线调光ML模型介绍

■ 采用的ML模型

□ MLP、GBM、DRF、XGBoost、GLM、StackedEnsemble

ResNet

→ 调光涉及的因素(影响光斑的因素)

- → 光学元件操作
 - →镜子的姿态——滚角、偏转、平移等
 - → 夹持、压弯等
 - → 狭缝卡位
- → 镜子本身――加工导致的面型误差
- → 光源——色散分布

- → 代码细节
 → 代码语言: Python
 - → 1、19倍音: Pyti
 - → 自己编写
 - → 模拟数据生成、图像预处 理、标签提取、ML训练 、预测、分析
 - → 代用第三方库
 - → XRT:用于光线追踪模拟的 python包
 - ➔ tensorFlow、Keras、 sklearn
 - ➔ pandas√ numpy
 - → matplotlib
 - → os、 sys、 time、 pickle、 mpi4py、 cv2、 PIL

Case.1 反射镜姿态调节

Case.1 反射镜姿态调节

- → 图像→镜子姿态
 - → 灰度图 (128*128)
 - → 对镜子参数预测效果

实验平台	显卡: NVIDIA RTX3090 显存: 24GB
数据集	961
图像尺寸	128*128*1
光斑分布 (横轴)	368.61~2773.6
光斑分布 (纵轴)	242.05~1132.62
横纵轴网络权重占比	1:1
训练集、测试集、验 证集比例	8: 1: 1
BatchSize	8
Epoch	50轮
训练时间	194s
镜子偏转参数绝对值 范围	0-15
MAE, R2	0.396,0.987

通过图像也能给出较为准确的镜子姿态信息

Case.1 反射镜姿态调节

→ 小结

粉捉卖酒		数据提取												図偽
女义1/凸	不际			中	心点			光斑尺寸						
机器	学习	梯度提 升机 GBM	深度学 习 DeepLea rning	分布式 随机森 林DRF	堆叠集 成算法 Stacked Ensembl e	提升树 模型 XGBoos t	广义线 性模型 GLM	梯度提 升机 GBM	深度学 习 DeepLea rning	分布式 随机森 林DRF	堆叠集 成算法 Stacked Ensembl e	提升树 模型 XGBoos t	广义线 性模型 GLM	Resnet
评价	\mathbb{R}^2	1.000	0.999	0.995	1.000	0.999	1.000	0.999	0.999	0.992	0.999	0.999	0.997	0.987
指标	MAE	0.000	0.179	0.425	0.015	0.086	0.015	0.063	0.168	0.242	0.116	0.092	0.257	0.396
时间	(s)	9	1241	74	254	453	8	7	1168	73	253	451	7	194

- 对于较为规则的图像,经过数据提取,要比直接输入图像预测效果更好
- 常规的ML模型都能胜任,较为复杂的ML模型存在欠拟合/训练时间长等情况,效果较差。

Case. 2 反射镜面形误差评估											<	Ż			
→ 模型比较															
训练	数据		焦点处			焦点前		模型序	号		焦点后				焦点处+ 焦点前+ 焦点后
取点	个数	30	30	300	30	30	30	30	100	100	300	300	300	300	300
	层数	3	5	5	3	4	6	5	3	4	4	5	5	5	5
回归层 结构	节点数	300-150- 30	600-400- 200-100- 30	1000- 800-600- 500-300	300-150- 30	300-150- 60-30	600-400- 200-100- 60-30	600-500- 450-400- 30	512-256- 100	1024- 512-256- 100	1024- 512-400- 300	600-500- 450-400- 300	1600- 1000- 800-600- 300	1000- 800-600- 400-300	1000- 800-600- 400-300
	MAE	3.6350	3.0476	2.8588	1.8667	2.0878	1.8259	1.7401	2.1176	1.8259	1.7680	1.8774	1.6458	1.6000	1.3671
评价指	MSE	34.4962	27.0844	25.6617	11.1458	13.0474	11.5208	12.2632	13.4616	11.6708	11.0437	11.8627	10.2043	10.1216	7.9287
标	RMSE	5.8733	5.2043	5.0657	3.3385	3.6121	3.3942	3.5019	3.6690	3.4163	3.3232	3.4442	3.1944	3.1814	2.8158
	R2	0.5478	0.6240	0.6605	0.8517	0.8286	0.8467	0.8287	0.8163	0.8409	0.8519	0.8285	0.8499	0.8644	0.8844

• 3图>焦点后>焦点前>焦点处

• 数据点数对训练时长、预测效果无影响

→ 最佳模型(3图通道)

→ 最佳模型(3图通道)

- 0.7 🕁

- 0.6

0.5

- 0.4

12

→ 模型比较

图像 焦点处 焦点前 焦点后								点前+焦点/				
损失函数		MAE	MAE	MAE	MAE	MAE + 强 制平均值 为0	MAE + 平 移误差+ 斜率误差	MAE + 10*平移 误差+ 10* 斜率误差	5* MAE + 平移误差 + 斜率误 差	10* MAE + 平移误 差+ 斜率 误差	20* MAE + 平移误 差+ 斜率 误差	30* MAE + 平移误 差+ 斜率 误差
	MAE	3.1701	1.0587	1.0060	0.711	0.6735	0.6853	0.9224	0.6022	0.6034	0.5965	0.6193
评价指标	MSE	27.2497	5.4236	3.7595	2.1415	1.9178	2.1174	2.776	1.8484	1.8272	1.7545	1.9172
	RMSE	5.2201	2.3289	1.9389	1.4634	1.3849	1.4551	1.6661	1.3596	1.3517	1.3246	1.3846
	R2	0.4039	0.8844	0.9193	0.9605	0.9636	0.9601	0.9444	0.9597	0.9631	0.9642	0.9634

模型序号

- ▶ 单通道: 焦点后 > 焦点前> 焦点处
- ▶ 多通道 > 单通道
- 物理嵌入能提升预测能力

→ 小结

- → 构建ML模型,通过XRT建模,利用样品处的图像来预测光学元件的 姿态,或镜子的面型误差,是可行的
- → 更为丰富的图像有助于姿态和面型误差的预测
- → 物理嵌入能有效提升预测能力
- → 下一步工作
 - → 优化数据集
 - →利用模式传播的方式、并行计算方法提升波动传播的计算效率
 - →生成更有针对性的数据集,降低训练难度
 - → 增大适用场景范围。考虑更多符合实验场景(考虑多镜、色散光、 夹持等),来预测镜子姿态;
 - → 优化ML模型
 - → 采集实验数据进行分析,用于HEPS首批线站束线调光
 - → 利用面型误差工作,将其推广到波前检测工作
 - → 结合控制系统,实现调光自动化

→团队

- → PAPS-X射线光学系统/HEPS-光学系统:杨福桂、李明
- → PAPS-X射线应用系统: 尧浩东

谢谢! 欢迎批评指正!