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PU mitigation at hadron colliders
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Pileup: additional pp collisions
superimposing to main collision

PU has increased in Run3 ((nPU) = 50)
and will increase in HL-LHC ((nPU) = 140)

Will severely degrade quality of
observables (jet multiplicity, jet
substructure, ...) if not properly treated

PU mitigation is crucial at hadron colliders

Easy task for charged particles: use
tracking information to disentangle particles

Very challenging for neutral particles
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State-of-the-art at CMS: PUPPI [1407.6013]

o Starting from Run3, default PU mitigation technique in CMS is PUPPI tetion.

o Rule-based algorithm F. lemmi

o Calculates a weight w € [0, 1] for each particle in the event Introduction
o Encodes the probability for a particle to be LV or not s
o Weight used to reweight the particle 4-momentum before jet clustering

o For charged: use tracking information and assign 0 or 1

For neutrals: build « variable

©

Results

(ij )2 {\77,-| < 2.5 jare all charged particles from LV
a; = log Z —

AR Ini| > 2.5 jare all kinds of particles i

SS vs FS

j;éi,AR,'j<R0

Conclusions

©

QCD is harder and more collimated than PU = higher o than PU

©

After some math and assumptions (details in backup) translate «; into w;
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ML for pileup mitigation
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o Published literature demonstrates that ML can drastically improve over
current state-of-the-art [1, 2, 3]
o In particular, GNNs proved to be very effective
o Collect info about neighboring particles in a much more expressive way
o General strategy: train a supervised model in Delphes fast-simulation using
per-particle truth labels
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ML for pileup mitigation

o Critical issue: per-particle lables are not
available in Geant4-based full simulations

o Previous approaches can't be ported to
experiments such as ATLAS and CMS
o Recently proposed to train on charged and
infer on neutrals [1]

o Can be done in ATLAS/CMS using tracker
o Relies on extrapolations
o Charged — neutrals; central — forward

o We developed a PU mitigation strategy
that does not rely on per-particle truth
labels or extrapolations
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A novel approach to PU mitigation

o Per-particle truth labels are not available in simulations at hadron colliders Ttgaton
o Our approach: simulate identical proton-proton collisions in two scenarios F femmi
@ Only the hard interaction is simulated: no-PU sample (X,o-pu) Introduction
@ Pileup is superimposed to the hard interaction: PU sample (Xpy) hadon ot
o Train network to learn differences between the two samples G
o Network choice: Attention-Based Cloud Network: ABCNet [1]
o 9 Results

y

S vs FS

Conclusions
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How to learn: OT concepts for

o Optimal transport (OT) can measure ~ ©
the “distance” between probability
distributions °

a loss function

Network output: per-particle weights Trﬁ;li-:al_ti:r?
w, é—la-PUPPI F. lemmi
Output weights aim at removing PU e
(give ~ 0 to PU and ~ 1 to LV) :

During training, weight Xpy by the Geners s
We|ghts w func'tr\"o;e -

Viodel

Tweak weights to minimize the distance  Resuis
between X,o.py and w - Xpy

Use Sliced Wasserstein Distance (SWD)
as an OT-inspired loss function for the
network Conclusions

D

No need for per-particle labels in this
setup
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Loss function

o SWD focuses on the optimal matching between individual particles in no-PU Tﬁggﬁ:ﬁ’
and PU samples N

o No guarantee that energy is conserved between the two
o Add an event-level MET constraint term to the loss T
o Enforce energies in no-PU and PU events to be similar

o Final loss function: General ides

OT in the loss
function

Model

[ oT = SWD(w - Xpu, Xno—PU) + A x MSE (MET(w 0 Xpu), MET(XnO_pu)) ] Results

Inclusive responses

where Xpy = PU sample; X,o.py = no-PU sample; MSE = mean squared
error

o A gives the strength of the energy regularization; tested both A = 0 and Conclusions
A=1073

o Call this Training Optimal Transport with Attention Learning: TOTAL
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The model

oo . TOTAL PU
ost-aggregation layers mitigation

o Compare TOTAL with PUPPI
and no-PU scenario

GAPBlock 1 X
) F. lemmi

(6= 16, k=20, h=1)
e ~

Neighbors features 1 Graph features 1
|
ConvD
(=shiemLs=1)
|

Introduction

oo o Reweight each particle's PU mitgation at
(=6t ks n\n\ A hadron colliders
S 4-momentum by the network PUPPI

General idea
Ne\ghbers‘&amMZ Graph features 2 Welght OT in the loss
| . lodel
P o Cluster TOTAL jets and ot
Results
Aggregation layers TOTAL MET Inclusive responses
Differential
. . resolutions
o We define the resolution as: Robustess
Physics impact

SS vs FS

5= 475% — q25%
2

Conclusions

where gxo, is the X-th quantile of the considered response distribution
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Inclusive responses
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o Jet energy response in QCD (left) and MET response in tt (right)

o Improvement up to 23% and 22% respectively
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Differential resolutions
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o Jet energy resolution vs jet py in tt (left) and vs jet n in QCD (right)

o Improvement up to 30% in JER, up to 20% in 7 resolution
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Robustness
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Physics impact

o Evaluate resolution on processes and PU scenarios unseen during training
o Network is trained on QCD+tt+VBF with (NPV) = 140
o Evaluate on W+jets production, flat NPV between 0 and 200

Conclusions
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Physics impact

o Study impact of TOTAL on LHC
searches

o Search for BSM VBF H(inv.)

o Signal signature: pair of forward
jets and MET

o Main background: strongly
produced Z(vv)

o Perform toy analysis by training a
linear classifier (SVM) using dijet
mass and MET

o Improvement in S/\/E of the order
of 15% for TOTAL

F. lemmi (IHEP)
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Self-supervised vs fully-supervised trainings

TOTAL PU
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Conclusions

o We presented novel algorithm to reject PU particles at high-intensity
hadron colliders

o Trained and tested on Delphes simulation of Phase2 CMS detector
o We are Training Optimal Transport with Attention Learning: TOTAL
o We solved the longstanding problem of neutral labels in PU mitigation
o We do not rely on explicit, per-particle labeling
o Learning happens through OT in a self-supervised fashion

@ Such an algorithm will be crucial at the High-Luminosity LHC, where much
harsher data-taking conditions are expected
o Our approach can be generalized to a wide range of denoising problems
o Only needed input is a reliable simulation of signal and noise
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State-of-the-art at CMS: PUPPI [1407.6013]

TOTAL PU
o Starting from Run3, default PU mitigation technique in CMS is PUPPI mitigation
o Rule-based algorithm o
o Calculates a weight w € [0, 1] for each particle in the event

o Encodes the probability for a particle to be LV or not

o Weight used to reweight the particle 4-momentum before jet clustering
o For charged: use tracking information and assign 0 or 1

o For neutrals: build « variable

(prj )2 {\77,-| < 2.5 jare all charged particles from LV
a; = log Z —

£ AR <R AR |ni] > 2.5 jare all kinds of particles

©

QCD is harder and more collimated than PU = higher o than PU

F. lemmi (IHEP) TOTAL PU mitigation June 15, 2023 2/14


https://arxiv.org/abs/1407.6013

State-of-the-art at CMS: PUPPI [1407.6013]

TOTAL PU
mitigation
o To translate into a weight, compare each particle’s a with the mean and RMS R
of PU particles
. > (ai —apy)|aj — apy|
signedy; =
N
o Use charged particles for apy and (as{\fs)z computation
o Finally, assume signedy? follows a x? distribution and assign weight based on
CDF
w; = Fy2 npF—1(signedx?)
o LV particle = large signedy’ = large CDF — large weight
o PU particle = small signedy? = small CDF = small weight
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State-of-the-art at CMS: PUPPI [1407.6013]

TOTAL PU

0.364 fb™* (13 TeV) 102 3.18 nb™ (13 Tev) mitigation
- T T T T T - T T T T T 3

3- 10; Jet sample, |n| < 2.5 | 3 PU sample, [n| < 2.5 5 RYen
@© E CMS ¢ Data, Ycharged PU © 10 CMS 4 D h d é
£ — Simulation, charged PU 1 ata, charge: 2
1= 4 Data, charged LV — Simulation, charged 3
E —— Simulation, charged LV 107t |
C + Data, neutral ] { Data, neutral §
1071? —— Simulation, neutral - 1072 —— Simulation, neutral 3
E ] 10° -
1072 E
E 107 =
10°L | 10° E
] 10° =
-4 | - [ 4 3

10 - P P N L 10 L R R I | I
s f s 15F E
= = i,,, " o !®, X . J
b % k<l c—; 15 no,“f# B
Ol O|E 0.5¢ " 3
%] (7] OE t E|
0 5 10 15 20 25

a

F. lemmi (IHEP) TOTAL PU mitigation June 15, 2023 4/14


https://arxiv.org/abs/1407.6013

Attention-Based Cloud network

o ABCNet is an graph neural network enhanced with attention mechanisms
o Treat particle collision data as a set of permutation-invariant objects
o Attention mechanisms filter out the particles that are not relevant for the

learning process

o Implemented inside custom graph attention pooling layers (GAPLayers)

Encoding

Self-coeff x;
Attention-

coeff
(]
@

—

.

Local-coeff yj;

Encoding
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Attention mechanism

o Add together self- (x/) and local- (y;) coefficients vigation
and apply non-linearity F. lemmi

Gj = LeakyRe|U(Xi/ + y’;)

o Align coefficients c;; by applying SoftMax

) exp(cy)
Y Y exp(cik)
Attention o Get attention coefficients by multiplying y;; by cj;

%i = Relu (Z c;jy,g.)
J
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Efficient OT: sliced Wasserstein distance (SWD)

TOTAL PU
o The optimal transport problem has a closed form for 1D problems: mitigation

F. lemmi

Welpx. pv) = [ ¢ (P, P () dr

where px, py are 1D PDFs, P)?I(T), P;l(r) are the respective CDFs and
c(+,-) is the transportation cost function

o No guarantee that the integral is solvable (it depends on the form of c(-,-))
o The integral can always be approximated by the finite sum

g (PX Tm), Py (Tm)), Tm = 2n27A; 1

F. lemmi (IHEP) TOTAL PU mitigation

June 15, 2023 7/14



(P (72), yl(Tz))l

o me{1,2,3,4,5} = 1, =20-1€{0.1,0.3,0.5,0.7,0.9}




Efficient OT: sliced Wasserstein distance (SWD)

TOTAL PU

o In the special case of discrete distributions (discrete in nature, or resulting
from a sampling), PDFs are sums of Dirac's deltas

M 1 M
Zé(x—xm py:MZ(s(y_}/m)?
m=1 m=1

o The integral of a Dirac’s delta is the Heaviside's step function © —
—> CDFs are Heaviside functions

t t M M
P(t) = / pe(2)dz = /\1/1/_00 > bz~ xm)dz = % > Ot = xn)

—00
o If we sort the samples by feature, the CDFs become a sum of steps
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Example: M =5

Bl

i

Tm
0.9
0.7
0.5
T = 0.3
01|

o me{1,2,3,4,5} = 1, =22-1¢{0.1,0.3,05,0.7,0.9}

o Note that

F. lemmi (IHEP)

Px_l(Tm):Xm; Py_l(Tm):)/m

TOTAL PU mitigation
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Efficient OT: sliced Wasserstein distance (SWD)

TOTAL PU
mitigation

o Note that

F. lemmi

o Therefore

L
M

1 M
c (P;l(Tm), P;I(Tm ) = Z ¢ (Xm, Ym)
m:l

Mz

WC(pX7 pY) -

m=1

o The 1D OT problem is reduced to a sorting of the 1D feature
o Fast and easy to solve
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Efficient OT: sliced Wasserstein distance (SWD)
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CHECKPOINT

@ Optimal transport problem has a closed form in 1D
@ For sampled distributions, the problem is reduced to a sorting of the 1D feature

@ Particles have multi-dimensional distributions though. How to apply this?
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Efficient OT: sliced Wasserstein distance (SWD)

(]

©

©

©

. . TOTAL PU
Each particle is a sample from a n-D mitigation
feature space o Now can solve the 1D OT F. lemmi
SWD: take n-D feature space and problem for each slice
project (slice) it to 1D o Sort particles by slice
Project on a vector belonging to S"! o The average on all slices and
For robustness, take multiple random particles becomes the loss function
slices
G Sorted Rg,, p1 in R
* Linear Task-Specific
Projection Sliced Wasserstein Discrepancy
/
g T
3 Sorted Rg,, p2 in R
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The model

Post-aggregation layers

Input
(Bx4000x19)
|
GAPBIock 1
(6= 16, k=26, h=1)
AN

Neighbors features 1 Graph features 1
|
ConviD
(=shkemLs=1)
|

Neighbors features 2 Graph features 2
|

ConviD
Shls=Ls

ConviD
(=256 46 =1,5= 1)

Aggregation layers

ConvD 4
(=stlets=p—
AN Aggregation [l
SRR :
=64, ktb, b
A N - )} :

(+]

©

(]

(*]

(]

9 input features:

(pt. m, ¢, E)

Charge

PDG ID

dXY & dZ impact parameters

Vertex association (for charged)
Loss: SWD(X, - &, Xnp) + MET
constraint

©

0000

Cost function: squared distance
Sliced features: (pt, 7, ¢, E)
Output: per-particle weight &

o Train on 300k events, equally split between QCD multijet, tt dileptonic and

VBF Higgs(4v) processes

o Consider 9000 particles per event (zero-padding included)
o Gather the 20 k-nearest neighbors for each particle when building graph
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