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PU mitigation at hadron colliders

Anna Benecke
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Analysing 2016 
data which is 
limited to ~50 PU


But most of Run 2 
is up to 50 PURu

n 
3

Pileup: additional pp collisions
superimposing to main collision
PU has increased in Run3 (〈nPU〉 = 50)
and will increase in HL-LHC (〈nPU〉 = 140)
Will severely degrade quality of
observables (jet multiplicity, jet
substructure, ...) if not properly treated
PU mitigation is crucial at hadron colliders
Easy task for charged particles: use
tracking information to disentangle particles
Very challenging for neutral particles
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State-of-the-art at CMS: PUPPI [1407.6013]

Starting from Run3, default PU mitigation technique in CMS is PUPPI
Rule-based algorithm
Calculates a weight w ∈ [0, 1] for each particle in the event

Encodes the probability for a particle to be LV or not
Weight used to reweight the particle 4-momentum before jet clustering

For charged: use tracking information and assign 0 or 1
For neutrals: build α variable

αi = log
∑

j 6=i ,∆Rij <R0

(
pT ,j
∆Rij

)2{|ηi | < 2.5 j are all charged particles from LV
|ηi | > 2.5 j are all kinds of particles

QCD is harder and more collimated than PU =⇒ higher α than PU
After some math and assumptions (details in backup) translate αi into wi
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ML for pileup mitigation
4 J. Arjona Mart́ınez et al.: Pileup mitigation at the Large Hadron Collider with Graph Neural Networks

Fig. 2. Conceptual depiction of the GGNN model architecture. The event is pre-processed by linking local particles together,
after which it is fed to 3 GGNN layers with time-steps [2, 1, 1] and including a residual connection from the first to the third
layer. This is then passed, individually per graph node, to a fully-connected network that outputs a [0,1] pileup classification
score. Adam is used with a learning rate of 0.004 to minimize the binary cross-entropy. The output of the network is checked
to be a well-calibrated probability.

– The PUPPI weight associated to the particle: a number between 0 and 1 that can be related to the probability of
the particle being pileup.

– A flag set to 1 for charged particles from the LV, -1 for charged pileup particles and 0 for all neutral particles. This
flag provides a simple encoding for when CHS is used.

– A pileup flag indicating whether the particle belongs to the hard scattering or to any of the pileup vertices. This
information is used as the ground truth later on.

We assume units such that h̄ = c = 1. Furthermore, we store for each event the median pT per unit area in (η, φ) for
all particles (ρ), for all charged particles alone (ρC), and for all neutral particles alone (ρN ).

4 Network architectures

PUPPI can be straightforwardly interpreted as a per particle classification algorithm. Under this point of view, tra-
ditional metrics such as the Receiver Operating Characteristic (ROC) curve (true positive rate against false positive
rate) or the accuracy (fraction of correctly classified particles) can be used. The choice of the shape variable α1 is then
driven by its discriminating power, with the underlying assumption that a better classification performance should
correlate with a better reconstruction of physics-motivated quantities which are relevant to study these data. For all
the investigated network architectures, we generalize this approach to multiple shape variables, indicated from now
on as features. We feed as input to our networks all the particles, with all the features discussed in Sec. 3 except for
the pileup flag, which we use as the training ground truth. The global features are concatenated to each particle’s
individual features. An generalization of PUPPI by mean of ML techniques is already discussed in Ref. [1], where it is
asserted that training a Boosted Decision Tree modestly improves performance when compared to the use of α1 as
discriminating quantity.

Our most straightforward model makes use of two stacked fully-connected hidden layers and a final single-neuron
layer with a sigmoid activation function. This network is trained, as all the other models, to minimize a binary
cross-entropy loss function using the Adam optimizer [32]. This model stands out for its simplicity, as it operates on
each particle completely independently of the others, but suffers from a clear issue: while the input includes global
(ρ, ρC , ρN ) and local (αCi , α

F
i ) features, the network has no mechanism by which it could learn these or similar features.

Extending the network architecture beyond a simple per-particle processing, one could overcome this limitation.
To this purpose, different network architectures can be chosen. Reference [24] describes an approach based on CNNs.
Motivated by the arguments described in Sec. 2, we complement the results of Ref. [24] by studying GRUs and GGNNs.
Both these architectures take as input the full list of particles in the event, outputting a per-particle label.

The GRU is a recurrent neural network architecture that sequentially processes each item of an input list, based
on the outcome of previous-item processing. While making no assumption on the underlying detector geometry, the
GRU architecture implies the use of a ranking principle to order the items in the input list. In our study, the inout
list contains the particles in the event, which are ordered by their pT value. This is one of the many arbitrary choices
that one could make. In the network, we make use of a bidirectional GRU layer, i.e., we consider both increasing- and
decreasing-pT ordering. The output of this layer is concatenated to each particle’s features. We show that this approach
does not improve the classification performance with respect to DNNs and traditional methods. This is mainly due by
the fact that GRUs require a global ordering criterion, while the information determining if a given particles belongs
to the LV or originates from pileuphas mainly to due with the particle’s local neighborhood.

Published literature demonstrates that ML can drastically improve over
current state-of-the-art [1, 2, 3]
In particular, GNNs proved to be very effective

Collect info about neighboring particles in a much more expressive way
General strategy: train a supervised model in Delphes fast-simulation using
per-particle truth labels
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ML for pileup mitigation

Critical issue: per-particle lables are not
available in Geant4-based full simulations

Previous approaches can’t be ported to
experiments such as ATLAS and CMS

Recently proposed to train on charged and
infer on neutrals [1]

Can be done in ATLAS/CMS using tracker
Relies on extrapolations
Charged → neutrals; central → forward

We developed a PU mitigation strategy
that does not rely on per-particle truth
labels or extrapolations

LV
PU

η

φ

Not available in full-sim!
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A novel approach to PU mitigation

Per-particle truth labels are not available in simulations at hadron colliders
Our approach: simulate identical proton-proton collisions in two scenarios

1 Only the hard interaction is simulated: no-PU sample (Xno-PU)
2 Pileup is superimposed to the hard interaction: PU sample (XPU)

Train network to learn differences between the two samples
Network choice: Attention-Based Cloud Network: ABCNet [1]

η

φ

η

φ

F. Iemmi (IHEP) TOTAL PU mitigation June 15, 2023 6 / 15

https://link.springer.com/article/10.1140/epjp/s13360-020-00497-3


TOTAL PU
mitigation

F. Iemmi

Introduction
PU mitigation at
hadron colliders

PUPPI

General idea

OT in the loss
function

Model

Results
Inclusive responses

Differential
resolutions

Robustness

Physics impact

SS vs FS

Conclusions

How to learn: OT concepts for a loss function

Optimal transport (OT) can measure
the “distance“ between probability
distributions

Network output: per-particle weights
ω, à-la-PUPPI
Output weights aim at removing PU
(give ≈ 0 to PU and ≈ 1 to LV)
During training, weight XPU by the
weights ω

Tweak weights to minimize the distance
between Xno-PU and ω · XPU

Use Sliced Wasserstein Distance (SWD)
as an OT-inspired loss function for the
network
No need for per-particle labels in this
setup

F. Iemmi (IHEP) TOTAL PU mitigation June 15, 2023 7 / 15
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Loss function

SWD focuses on the optimal matching between individual particles in no-PU
and PU samples

No guarantee that energy is conserved between the two
Add an event-level MET constraint term to the loss

Enforce energies in no-PU and PU events to be similar
Final loss function:

OT = SWD(ω · XPU, Xno-PU) + λ × MSE (MET(ω · XPU), MET(Xno-PU))

where XPU = PU sample; Xno-PU = no-PU sample; MSE = mean squared
error
λ gives the strength of the energy regularization; tested both λ = 0 and
λ = 10−3

Call this Training Optimal Transport with Attention Learning: TOTAL
F. Iemmi (IHEP) TOTAL PU mitigation June 15, 2023 8 / 15
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The model
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Aggregation layers

Post-aggregation layers

Compare TOTAL with PUPPI
and no-PU scenario
Reweight each particle’s
4-momentum by the network
weight
Cluster TOTAL jets and
TOTAL MET

We define the resolution as:

δ = q75% − q25%
2

where qX% is the X-th quantile of the considered response distribution
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Inclusive responses

-1.0 -0.5 0.0 0.5 1.0
Jet energy response

0.0

1.0

2.0

3.0

4.0

5.0

6.0

N
or

m
al

iz
ed

 e
nt

rie
s

0 PU: 0.035
PUPPI: 0.071
TOTAL: 0.061
TOTAL + : 0.055

-2 -1 0 1 2
pmiss

T  response

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 e
nt

rie
s

0 PU: 0.121
PUPPI: 0.244
TOTAL: 0.219
TOTAL + : 0.190

Jet energy response in QCD (left) and MET response in t̄t (right)
Improvement up to 23% and 22% respectively
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Differential resolutions
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Jet energy resolution vs jet pT in t̄t (left) and vs jet η in QCD (right)
Improvement up to 30% in JER, up to 20% in η resolution
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Robustness
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Evaluate resolution on processes and PU scenarios unseen during training
Network is trained on QCD+t̄t+VBF with 〈NPV〉 = 140
Evaluate on W+jets production, flat NPV between 0 and 200
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Physics impact

Study impact of TOTAL on LHC
searches

Search for BSM VBF H(inv.)
Signal signature: pair of forward
jets and MET
Main background: strongly
produced Z(νν)
Perform toy analysis by training a
linear classifier (SVM) using dijet
mass and MET
Improvement in S/

√
B of the order

of 15% for TOTAL
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Self-supervised vs fully-supervised trainings

Compare performance of TOTAL
with fully-supervised algorithms
Compare with backbone architecture
of TOTAL (ABCNet) and PUMA
Performance of TOTAL is
comparable with fully-supervised
approaches
But, contrary to previous
approaches, TOTAL can be ported
to full simulation
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Conclusions

We presented novel algorithm to reject PU particles at high-intensity
hadron colliders

Trained and tested on Delphes simulation of Phase2 CMS detector
We are Training Optimal Transport with Attention Learning: TOTAL
We solved the longstanding problem of neutral labels in PU mitigation
We do not rely on explicit, per-particle labeling
Learning happens through OT in a self-supervised fashion
Such an algorithm will be crucial at the High-Luminosity LHC, where much
harsher data-taking conditions are expected
Our approach can be generalized to a wide range of denoising problems

Only needed input is a reliable simulation of signal and noise
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State-of-the-art at CMS: PUPPI [1407.6013]

Starting from Run3, default PU mitigation technique in CMS is PUPPI
Rule-based algorithm
Calculates a weight w ∈ [0, 1] for each particle in the event

Encodes the probability for a particle to be LV or not
Weight used to reweight the particle 4-momentum before jet clustering

For charged: use tracking information and assign 0 or 1
For neutrals: build α variable

αi = log
∑

j 6=i ,∆Rij <R0

(
pT ,j
∆Rij

)2{|ηi | < 2.5 j are all charged particles from LV
|ηi | > 2.5 j are all kinds of particles

QCD is harder and more collimated than PU =⇒ higher α than PU
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State-of-the-art at CMS: PUPPI [1407.6013]

To translate into a weight, compare each particle’s α with the mean and RMS
of PU particles

signedχ2
i = (αi − ᾱPU)|αi − ᾱPU|

(αRMS
PU )2

Use charged particles for ᾱPU and (αRMS
PU )2 computation

Finally, assume signedχ2 follows a χ2 distribution and assign weight based on
CDF

wi = Fχ2,NDF=1(signedχ2)

LV particle =⇒ large signedχ2 =⇒ large CDF =⇒ large weight
PU particle =⇒ small signedχ2 =⇒ small CDF =⇒ small weight
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State-of-the-art at CMS: PUPPI [1407.6013]

4. The CHS and PUPPI algorithms 7
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Figure 2: Data-to-simulation comparison for three different variables of the PUPPI algorithm.
The markers show a subset of the data taken in 2016 of the jet sample and the PU sample, while
the solid lines are QCD multijet simulations or PU-only simulation. The lower panel of each
plot shows the ratio of data to simulation. Only statistical uncertainties are displayed. The
upper left plot shows the α distribution in the jet sample for charged particles associated with
the LV (red triangles), charged particles associated with PU vertices (blue circles), and neutral
particles (black crosses) for |η| < 2.5. The upper right plot shows the α distribution in the PU
sample for charged (blue circles) and neutral (orange diamond) particles. The lower left plot
shows the signed χ2 = (α− αPU)|α− αPU|/(αRMS

PU )2 for neutral particles with |η| < 2.5 in the jet
sample (black crosses) and in the PU sample (orange diamonds). The lower right plot shows
the PUPPI weight distribution for neutral particles in the jet sample (black crosses) and the PU
sample (orange diamonds). The error bars correspond to the statistical uncertainty.
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Attention-Based Cloud network

ABCNet is an graph neural network enhanced with attention mechanisms
Treat particle collision data as a set of permutation-invariant objects
Attention mechanisms filter out the particles that are not relevant for the
learning process

Implemented inside custom graph attention pooling layers (GAPLayers)
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Attention mechanism

Attention

Add together self- (x ′
i ) and local- (y ′

ij) coefficients
and apply non-linearity

cij = LeakyRelu(x ′
i + y ′

ij)

Align coefficients cij by applying SoftMax

c ′
ij = exp(cij)∑

k exp(cik)

Get attention coefficients by multiplying y ′
ij by c ′

ij

x̂i = Relu

∑
j

c ′
ijy ′

ij
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Efficient OT: sliced Wasserstein distance (SWD)

The optimal transport problem has a closed form for 1D problems:

Wc(pX , pY ) =
∫ 1

0
c
(
P−1

X (τ), P−1
Y (τ)

)
dτ

where pX , pY are 1D PDFs, P−1
X (τ), P−1

Y (τ) are the respective CDFs and
c(·, ·) is the transportation cost function
No guarantee that the integral is solvable (it depends on the form of c(·, ·))
The integral can always be approximated by the finite sum

1
M

M∑
m=1

c
(
P−1

X (τm), P−1
Y (τm)

)
, τm = 2m − 1

2M
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Example: M = 5

px py

x

τ2 = 0.3

c(P−1
x (τ2), P

−1
y (τ2))

0.1
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0.7

0.9

1
M

Px Py

x

τm

m ∈ {1, 2, 3, 4, 5} =⇒ τm = 2m−1
2M ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
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Efficient OT: sliced Wasserstein distance (SWD)

In the special case of discrete distributions (discrete in nature, or resulting
from a sampling), PDFs are sums of Dirac’s deltas

px = 1
M

M∑
m=1

δ(x − xm); py = 1
M

M∑
m=1

δ(y − ym);

The integral of a Dirac’s delta is the Heaviside’s step function Θ =⇒
=⇒ CDFs are Heaviside functions

Px (t) =
∫ t

−∞
px (z)dz = 1

M

∫ t

−∞

M∑
m=1

δ(z − xm)dz = 1
M

M∑
m=1

Θ(t − xm)

If we sort the samples by feature, the CDFs become a sum of steps
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Example: M = 5

px py

x

Px Py

c(P−1
x (τ2), P

−1
y (τ2))

1
Mτ2 = 0.3

x1 x2 x3 x4x5

0.1

0.5

0.7

0.9

x

τm

m ∈ {1, 2, 3, 4, 5} =⇒ τm = 2m−1
2M ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

Note that

P−1
x (τm) = xm; P−1

y (τm) = ym
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Efficient OT: sliced Wasserstein distance (SWD)

Note that

P−1
x (τm) = xm; P−1

y (τm) = ym

Therefore

Wc(pX , pY ) = 1
M

M∑
m=1

c
(
P−1

X (τm), P−1
Y (τm)

)
= 1

M

M∑
m=1

c (xm, ym)

The 1D OT problem is reduced to a sorting of the 1D feature
Fast and easy to solve
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Efficient OT: sliced Wasserstein distance (SWD)

CHECKPOINT
1 Optimal transport problem has a closed form in 1D
2 For sampled distributions, the problem is reduced to a sorting of the 1D feature
3 Particles have multi-dimensional distributions though. How to apply this?
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Efficient OT: sliced Wasserstein distance (SWD)

Each particle is a sample from a n-D
feature space
SWD: take n-D feature space and
project (slice) it to 1D
Project on a vector belonging to Sn−1

For robustness, take multiple random
slices

Now can solve the 1D OT
problem for each slice
Sort particles by slice
The average on all slices and
particles becomes the loss function

Input

C1

C2

G Task-Specific 
Sliced Wasserstein Discrepancy

Linear  
Projection 

Figure 1: An illustration of the proposed sliced Wasserstein discrepancy (SWD) computation. The SWD is designed to capture the
dissimilarity of probability measures p1 and p2 in Rd between the task-specific classifiers C1 and C2, which take input from feature
generatorG. The SWD enables end-to-end training directly through a variational formulation of Wasserstein metric using radial projections
on the uniform measures on the unit sphere Sd−1, providing a geometrically meaningful guidance to detect target samples that are far from
the support of the source. Please refer to Section 3.3 for details.

(2) freeze the parameters of the generator G and update the
classifiers (C1, C2) to maximize the discrepancy between
the outputs of the two classifiers on the target setXt, identi-
fying the target samples that are outside the support of task-
specific decision boundaries,

min
C1,C2

Ls(Xs, Ys)− LDIS(Xt) (2)

where LDIS(Xt) is the discrepancy loss (L1 in [58]).
Ls(Xs, Ys) is also added to this step to retain information
from the source domain, and
(3) freeze the parameters of the two classifiers and update
the generator G to minimize the discrepancy between the
outputs of the two classifiers on the target set Xt,

min
G
LDIS(Xt) (3)

This step brings the target feature manifold closer to the
source.

3.2. Optimal Transport and Wasserstein Distance

The effectiveness of domain adaptation in the aforemen-
tioned MCD framework depends entirely on the reliability
of the discrepancy loss. Learning without the discrepancy
loss, essentially dropping step 2 and step 3 in the training
procedure, is simply supervised learning on the source do-
main.

The Wasserstein distance has recently received great at-
tention in designing loss functions for its superiority over
other probability measures [74, 41]. In comparison to other
popular probability measures such as total variation dis-
tance, Kullback-Leibler divergence, and Jensen-Shannon
divergence that compare point-wise histogram embeddings
alone, Wasserstein distance takes into account the proper-
ties of the underlying geometry of probability space and it is
even able to compare distribution measures that do not share
support [1]. Motivated by the advantages of the Wasserstein
distance, we now describe how we leverage this metric for
measuring the discrepancy in our method.

Let Ω be a probability space and µ, ν be two probability
measures in P(Ω), the Monge problem [43] seeks a trans-
port map T : Ω→ Ω that minimizes the cost

inf
T#µ=ν

∫
Ω

c(z, T (z))dµ(z), (4)

where T#µ = ν denotes a one-to-one push-forward from
µ toward ν ∀ Borel subset A ⊂ Ω and c : Ω × Ω → R+

is a geodesic metric that can be either linear or quadratic.
However, the solution T ∗ may not always exist due to the
assumption of no splitting of the probability measures, for
example when pushing a Dirac measure toward a non-Dirac
measure.

Kantorovitch [27] proposed a relaxed version of Eq 4,
which seeks a transportation plan of a joint probability dis-
tribution γ ∈ P(Ω× Ω) such that

inf
γ∈Π(µ,ν)

∫
Ω×Ω

c(z1, z2)dγ(z1, z2), (5)

where Π(µ, ν) = {γ ∈ P(Ω× Ω)|π1#γ = µ, π2#γ = ν}
and π1 and π2 denote the two marginal projections of Ω×Ω
to Ω. The solutions γ∗ are called optimal transport plans or
optimal couplings [73].

For q ≥ 1, the q-Wasserstein distance between µ and ν
in P(Ω) is defined as

Wq(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Ω×Ω

c(z1, z2)
qdγ(z1, z2)

)1/q

, (6)

which is the minimum cost induced by the optimal trans-
portation plan. In our method, we use the 1-Wasserstein
distance, also called the earth mover’s distance (EMD).

3.3. Learning with Sliced Wasserstein Discrepancy

In this work, we propose to apply 1-Wasserstein dis-
tance to the domain adaptation framework described in
Section 3.1. We utilize the geometrically meaningful 1-
Wasserstein distance as the discrepancy measure in step 2
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The model

Input
(Bx4000x19)

GAPBlock 1
(f = 16, k=20, h=1)

Neighbors features 1 Graph features 1

Conv1D
(f = 64, ks = 1, s = 1)

Conv1D
(f = 64, ks = 1, s = 1)

GAPBlock 2
(f = 64, k=20, h=1)
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Conv1D
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Conv1D
(f = 256, ks = 1, s = 1)
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Aggregation layers

Post-aggregation layers
9 input features:

(pT, η, φ, E)
Charge
PDG ID
dXY & dZ impact parameters
Vertex association (for charged)

Loss: SWD(~xp · ~ω,~xnp) + MET
constraint
Cost function: squared distance
Sliced features: (pT, η, φ, E )
Output: per-particle weight ~ω

Train on 300k events, equally split between QCD multijet, t̄t dileptonic and
VBF Higgs(4ν) processes
Consider 9000 particles per event (zero-padding included)
Gather the 20 k-nearest neighbors for each particle when building graph
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