PID study with cluster counting on the drift chamber of CEPC 4th detector

Shuiting Xin on behalf of DC PID working group

2023.6.14

Introduction

- Full simulation is the foundation of dN/dx PID study.
- Major challenges
 - Garfield++ simulation of waveform is super time comsuing.
 - Need a more realistic model from the test beam data
- A full simulation package is developed considering the challenges
- Performed PID analysis using full simulation with high statistics.
- Updated a new machine learning algorithm for cluster reconstruction.

Full simulation

From simulation to waveform analysis

The full simulation package

Signal generation speed up Garfield++ simulation

Digitization

extracted from data

- Noise: FFT analysis
- Pre-amplifier response
- Amplitude scale

Waveform analysis

- Drivative method
- Machine learning method

Signal generation: An effective model

<u>Details</u>

Speed up of signal generation: Replacements of the amplification and signal creation of Garfield++ simulation.

Digitization: Noise generation

Run 15/16/17, DRS channel 5, Gas mixture: 90/10 (He/iC₄H₁₀),

Level of noise ratio in experiment data: 5%.

Data sample used in MC tuning

Cell size: 1 cm, Sampling rate: 1.5 GHz

Digitization: Pre-amplifier response

- Parameterized using beam test data inputs (provided by Gianluigi)
- Use cutoff ~ 0.5 GHz / (risetime $\sim 5-6$ ns) in digitization

Preamp channel – Gain 1

0.9 GHz

dB Mag 10 dB / Ref0 dB Cal

dB Mag 10 dB / Ref0 dB

Trc1

Mem2[Trc1]

Digitization: Scaling of the amplitude

Scale the MC to data by 0.0065 (max amp)

Waveform shapes

Simulation

Beam test data

PID analysis

PID analysis

- Evaluating K/pi separation from cluster reconstruction, two steps:
 - Peak finding: find all ionization peaks from waveform.
 - Clusterization: determine the number of clusters (N_{cls}) according to the ionization peaks.
- Simulation data:
 - 20k events of k/pi tracks (previous Garfield++ events: 1k).
 - 2%/5% noise ratio (noise tuned from data).
 - New Pre-amplifier, old current-sensitive pre-amplifier.
 - Cell size: 1.8 cm.
 - Gas mixture: 90% He 10% iC₄H_{10.}

Peak finding

- Derivative algorithm is used.
- Adjusted parameters to minimize the fake rates
 - Performed peak finding on pure noise samples

2

500

1000

Parameters

- Moving average = 1
- Threshold = 0.04

1500

2000

2500

Pure noise sample

3000

Clusterization

- Merging algorithm using timing information of continuous peaks
 - The time cut is measured from MC. Fitted function: $t_{cut} = a * \sqrt{t_{drift}} + b$
- Clusterization steps:
 - $t_{cluster}$ definition: time of the middle position of a cluster
 - If $\Delta t = abs(t_{cluster,i} t_{peaks,j}) < t_{cut}$, one merges peak-j to cluster-i, updates $t_{cluster,i}$

Cluster reconstruction performance

Preliminary performance:

- Cluster reconstruction efficiency: eff = #reco cls/ #truth cls = 92.5%,
- 1m resolution $\sim 2.7\%$

Preliminary PID performance

- K/pi separation using old current-sensitive pre-amplifier (tau = 2), noise ratio = 2%/5% condition.
- New results: 2.75 (2.65) σ with 2% (5%) noise at momentum = 20GeV.
- Reconstruction algorithm parameters are suboptimal.

Preliminary PID performance

K/pi separation using new pre-amplifier (cut-off 0.5 GHz), noise ratio = 5% condition

(with cos(theta) increasing)

Updates of machine learning algorithm

Review of previous LSTM+CNN method

Step1: A classification problem to classify ionization signals and backgrounds in the waveform using LSTM.

Step2: A regression problem to predict N_{cls} using CNN.

Attempt to train clusterization algorithm with DGCNN

- Graph Neural Network (GNN):
 - based on graph-structured data, capture the dependencies and relationships between nodes in the graph.
 - A group of ionization peaks as a graph, where the peaks are nodes and the relationships between them are edges.
- Dynamic Graph CNN (DGCNN):
 - Dynamically construct the graph at each layer: connect k-NN nodes.
 - Better capture local geometric features.
 - Already been used in high energy physics \rightarrow ParticleNet.

DGCNN structure

- Graph: Each waveform corresponds to a graph
- Node: Ionization peaks found by LSTM model
- Node feature: Positions (time) of the ionization peaks on the waveform
- Edge: Dynamically computed.
- Labels: Types of ionization peaks (1 for primary ionization peaks, 0 for non-primary ionization peaks)
- Loss: Cross entropy loss (Log softmax + NLL Loss)

2023/6/14

 \Rightarrow Node classification

Clusterization results

ntot(truth) : Total ionization peaks in MC truth

ntot(peak finding): Total ionization pmeaks after Peak Finding step1

ncls(truth) : Number of clusters in MC truth

ncls(target): Number of clusters after Peak finding (from MC truth), target of clusterization algorithm step2 ncls(pred): Number of clusters predicted by clusterization algorithm 2023/6/14

Clusterization results

DGCNN classification has better NcIs distribution among four methods.

2023/6/14

Clusterization performance of different methods

Method	N _{mean}	σ	$\sqrt{N_{ m mean}}/\sigma$	$\sigma/N_{\rm mean}$
MC Truth	27.44	5.19	1.010	18.9%
Target	16.53	3.93	1.034	23.8%
Time Cut	18.67	4.60	0.940	24.6%
CNN Regression	16.04	3.29	1.218	20.5%
DGCNN Regression	15.94	3.57	1.118	22.4%
DGCNN Classification	17.70	4.33	0.972	24.4%

- DGCNN classification has better NcIs distribution than traditional time cut method and CNN.
- Considering combination of the loss functions of DGCNN Regression and DGCNN Classification.

Summary

- The full simulation package is updated and works well.
 - Effective models are implemented to speed up the simulation
 - Simulation of electronics and noises are tuned with data.
- A PID analysis is performed using events from the simulation package.
 - Preliminary result with experimental noise and new pre-amplifier is given.
 - Better than 2.6 σ K/pi separation at 20 GeV.
- Cluster counting algorithms using ML are developed.
 - DGCNN classification method gives a better Ncls distribution than others.

Backup slides

pulse amplitude model

2023/6/14

Naval

27

Pulse time model

- For a fixed electric/magnetic field:
 t is mainly determined by initial position of the electron
- Measure the relationship from Garfield++ simulation
 - $t(x, y) = Gauss(\mu(x, y), \sigma(x, y))$

Comparison to Garfield++

Pulse shape model

• Fit the Garfield pulse by:

•

$$f(x|A,t) = \begin{cases} p_0 \times \frac{e^{-p_1(x-p_2)}}{1+e^{-\frac{t-p_3}{p_4}}}, x < t\\ A \times \frac{p_5^{p_6}}{(x-t)^{p_6}+p_5^{p_6}}, x \ge t \end{cases}$$

Simulation waveforms (2)

Data waveforms (2)

• Peak finding results:

The efficiency of peak searching is about 60%, but the primary ionization numbers obtained after peak finding still have a good Gaussian shape.

