Progress in Recognition of Energy deposition of charged particle in ECAL

Zhang Yang, Weizheng Song, Fangyi Guo, Linghui Wu, ShengSen Sun June 13th, 2023

Introduction

- \succ CEPC, a high precision H/Z factory
 - Heavy bosons separation and precise Higgs measurements require excellent jet energy resolution 3~4%.
 - Fine γ/π^0 reconstruction for flavor physics.

Particle flow Approach

 Identification of energy deposits from each individual particle.

•
$$\sigma_{jet} = \sqrt{\sigma_{Track}^2 + \sigma_{EM}^2 + \sigma_{Had}^2 + \sigma_{Confusion}^2}$$

e.g. part of charged hadron shower misidentified as a separate neutral cluster, the energy is double-counted

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b\bar{b}/c\bar{c}/gg$	$BR(H \to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E=$ 3 ~ 4% at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\Delta E/E = \frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$
E _{JET} = E _{TRACK} +	Ey + En Charged Hadrons	Photons Neutral Hadron	Electron 2

Energy of charged particle deposit in ECAL

- ~60% of the jet energy is carried by charged particle
- ~2/3 of charged hadrons shower in ECAL

 \succ Important to recognize energy deposits of charged particles in ECAL to get the best $\sigma_{confusion}$

Development of Track-Matching Algorithm

 \succ Works well for particles with high p_T (~2GeV)

Development of Track Matching Algorithm

Performance of Track-Matching Algorithm

 $\mu^{-}, E = 2 GeV, \theta = 50^{\circ} \sim 130^{\circ}, \phi = 0^{\circ} \sim 360^{\circ}, 1000 \text{ events}$

x/mm

summary

- > Track-matching algorithm is developed
 - For charged particles with high p_T , match extrapolated points and local max directly
 - Due to the effect of energy loss and multiple scattering, cone-based method used for charged particles with low p_T
- Performance of MIP and hadronic shower are shown
 - Matching efficiency ~100%
 - Hadronic shower may be gathered into multiple clusters. Only one is matched with track.

backup

- N: neutral hadron
- t: truth
- r: reconstruction

track cluster

event display

