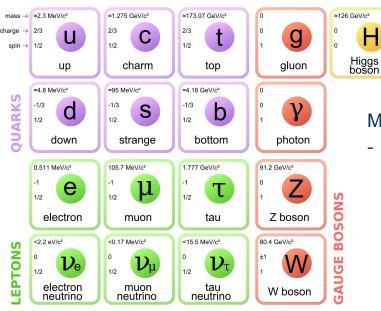
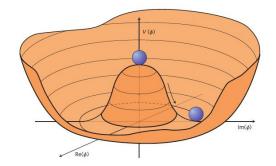


The Top-Higgs Coupling: A Key to Inferring Higgs Physics

Shuo Han 韩朔

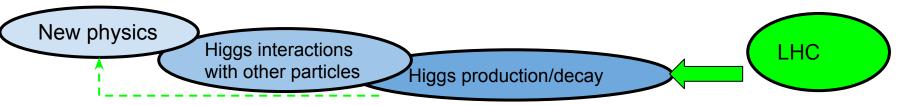
June 16th 2023


PKU-SJTU Collider Physics Forum for Junior Scholars


Why are Higgs properties important?

Standard Model (SM) describes 3 fundamental interactions, but leaves several questions, including

- Hierarchy: why the weak scale << Planck scale?
- What is the particle nature of Dark Matter?
- Why there is much more Matter than Antimatter?

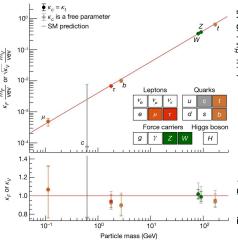

Measuring Higgs boson properties

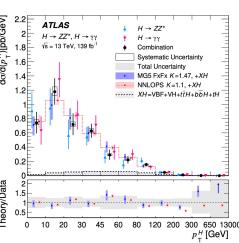
- a well established solution of the above questions
 - Hierarchy origins from Higgs boson properties
 - Dark Matter particles can obtain mass with Higgs mechanism
 - There can be CP violation in Higgs couplings

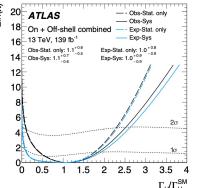
Experimental approaches for Higgs properties

Three experimental approaches towards the new physics with Higgs properties:

- Measuring on-shell Higgs boson
 - Higgs boson as physics particle in the final state
- Measuring off-shell Higgs boson
 - Higgs boson as mediator in the physics process
- Searching for beyond SM (BSM) processes


I'll introduce how to use the 3 approaches for specific Higgs properties later


Experimental landscape of Higgsproperties


Higgs couplings with other particles

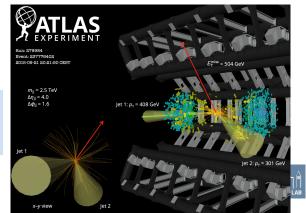
Differential cross-section



Width and Mass

PLB (arXiv:2304.01532)

CP properties



PRL 125 (2020) 061802

Nature 607 (2022) 52-59 JHEP 05 (2023) 028

Searches e.g. Higgs→invisible

JHEP 08 (2022) 104

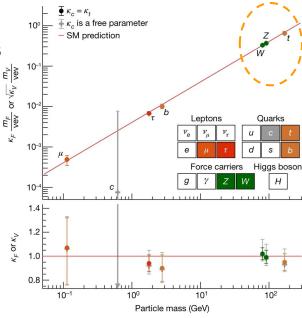
Shuo Han

Why top-Higgs coupling important

It's the heaviest

• top quark mass (172 GeV) is 10⁴-10⁵ times as u/d and electrons

In marco world, the adult human weight: 15 - 635 kg, scale difference is 10²


the top-Higgs coupling strength is remarkably close to 1

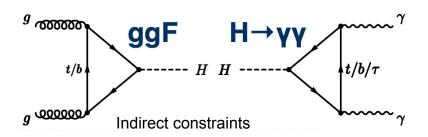
$$y_t = \sqrt{2} m_t / \text{vev} = \sqrt{2} (172 \text{ GeV}) / (246 \text{ GeV}) \approx 0.99$$

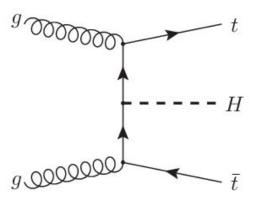
Study top-Higgs coupling can answer unsolved questions, by testing

- can top-Higgs coupling violate CP symmetry?
- can top-Higgs coupling strength modified by the new physics?
- can top mass comes from other interactions than Higgs mechanism?

The questions will be addressed by the physics analyses I introduce today

The CP properties in top-Higgs couplings


- In the SM, the Yukawa interactions are CP-even. In BSM models, CP-odd component arises
- The Lagrangian for top-Higgs interaction can be written as

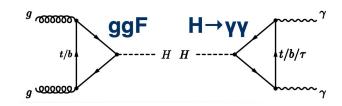

$$\mathcal{L}_t = -\frac{m}{\nu} \kappa_t(\cos(\alpha)\bar{t}t + i\sin(\alpha)\bar{t}\gamma_5 t)H, \quad \text{Standard model : } \alpha = 0, \, \kappa_t = 1$$
CP even CP odd

CP properties can be directly measured with top-Higgs coupling

The top-Higgs Yukawa couplings and CP properties can be constrained

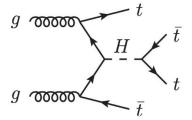
- directly, with tops in the final states (ttH/tH)
- indirectly, with tops as mediators

The Higgs width with top-Higgs couplings


- The Higgs total width is a sum of partial width over all possible SM and BSM decay final states
- One could use a combination of on- and off-shell measurements to constrain the Higgs total width,
 - o for example, measure the top-Higgs coupling with off-shell Higgs boson in the four-top production

$$\frac{d\sigma}{dm^2} = \frac{g_i^2 g_f^2}{(m^2 - m_H^2)^2 + m_H^2 \Gamma^2}$$

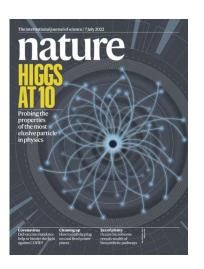
 The differential cross section is given by a Breit-Wigner


$$\sigma \propto rac{g_i^2 g_f^2}{m_H \Gamma}$$

For on-shell measurements of the Higgs boson, we cannot break the degeneracy between κ and Γ

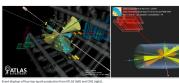
$$\frac{d\sigma}{dm^2} \propto \frac{g_i^2 g_f^2}{(m^2 - m_H^2)^2}$$

 The off-shell measurements determine couplings without the assumption of width


Shuo Han

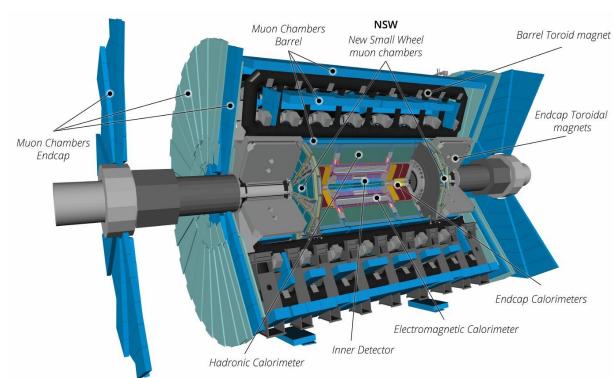
Experimental landscape of top-Higgs coupling

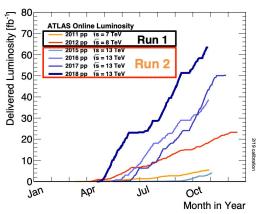
With the 3 experimental approaches, I'll introduce the following analyses today


- top-Higgs coupling with on-shell Higgs boson
 - A direct measurement of CP properties in top-Higgs Yukawa coupling PRL 125 (2020) 061802
 - Top-Higgs coupling with simplified template cross-section (STXS) measurements <u>JHEP (arXiv:2207.00348)</u> (input of <u>Nature 607 (2022)</u> 52-59)
- Searching for new physics that may arises with new top-Higgs sectors
 - Higgs(→γγ) + X searches <u>JHEP (arXiv:2301.10486)</u>
- top-Higgs coupling with off-shell Higgs boson
 - Observation of the four-top-quark production <u>EPJC 83 (2023) 496</u>

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the Standard Model


24 MARCH, 2023 | By Naomi Dinmore



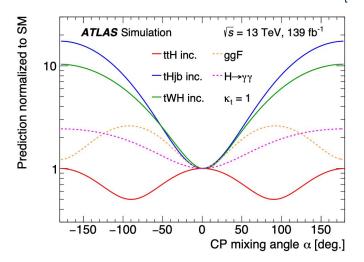
ATLAS Detector and Run-2 data

This talk: 140 fb⁻¹ pp collision data at 13 TeV with ATLAS (ATLAS Run-2)

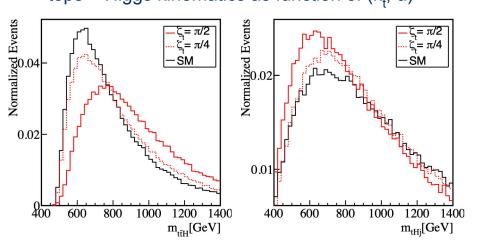
SJTU-ATLAS team contributes to the muon detectors upgrade (TGC), and PKU-CMS team contributes to the muon detector upgrade of CMS (GEM). Both teams leads various physics analyses.

BERKELEY LAB

Shuo Han


with on-shell Higgs boson

CP in top-Higgs coupling with $H \rightarrow \gamma \gamma$



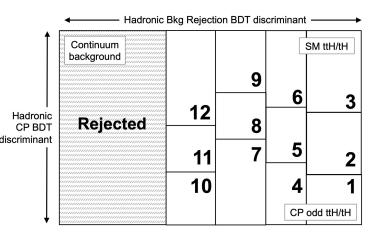
- CP properties in the top-Higgs coupling with ATLAS Run-2 PRL 125 (2020) 061802
 - a. Select ttH/tH, $H \rightarrow \gamma \gamma$ events, extract the number of signal events
 - b. Parameterise ttH/tH productions with top-Higgs coupling modifier κ, and CP mixing angle α
 - c. Interpret the result and measure (κ_{t}, α)

ttH and tH cross-section as function of (κ_{t}, α)

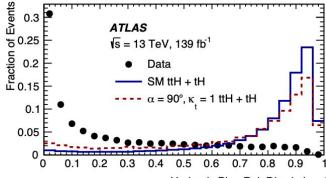
tops + Higgs kinematics as function of (κ_{+}, α)

CERN-PH-TH/2013-312

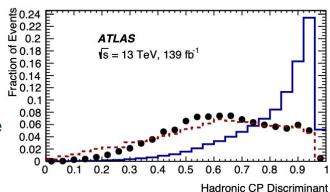
CP in top-Higgs coupling: selections



The ttH/tH, $H \rightarrow \gamma \gamma$ events are selected with two event classifiers ttH/tH CP odd vs CP even

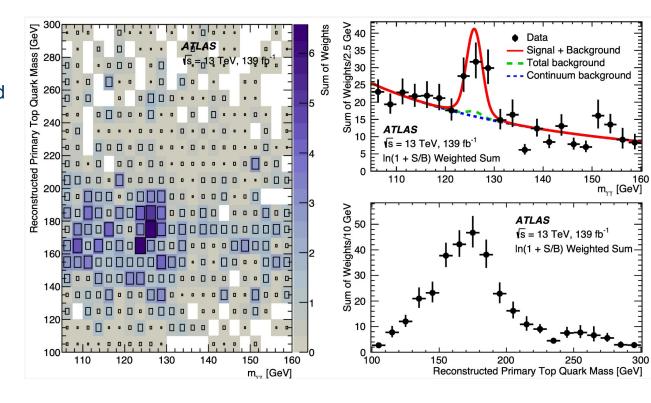

- A boosted decision tree (BDT)
- Using kinematics of γγ system and the top candidates
- For the top candidates, using a top-reconstruction method combining the 3 objects (tri-jets or j, e/μ, v) from top decay

Signal vs background


- A BDT distinguish the ttH/tH from background (other Higgs, γγ, γ+j, ttγγ)
- Using γ, e/μ, j and missing ET kinematics

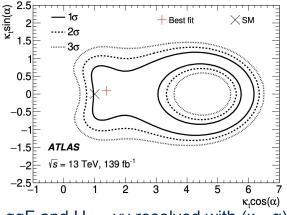
12 categories for tophadronic decays+ 8 more categories for thetop leptonic decays

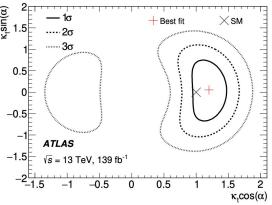
Hadronic Bkg. Rej. Discriminant



CP in top-Higgs coupling with $H \rightarrow \gamma \gamma$

- Top quark kinematics are used to distribute events in categories
- Signal + background fit on the m(γγ) in each category
- 3. Extract ttH/tH, $H \rightarrow \gamma \gamma$ events


CP in top-Higgs coupling with $H \rightarrow \gamma \gamma$

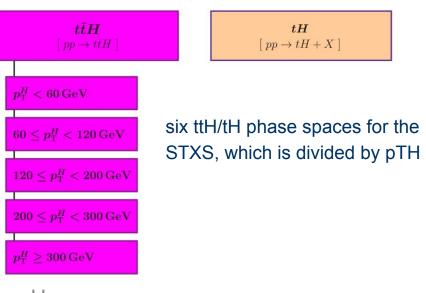

• The measurement ttH/tH cross-section is

$$\mu = 1.43^{+0.33}_{-0.31}(\text{stat.})^{+0.21}_{-0.15}(\text{syst.})$$
 Observation of ttH/tH firstly in single channel (sig. = 5.2 σ)

- κ, α are measured
 - total CP-odd (α=90°) is excluded by 3.9σ, 95% CL limit on CP mixing: |α| < 43°
 - \circ 2D 95% CL limits on [κ₊sin(α), κ₊cos(α)]

ggF and H \rightarrow $\gamma\gamma$ resolved with (κ, α)

 $\kappa_{_{\! q}}$ and $\kappa_{_{\! v}}$ set to combined measurements

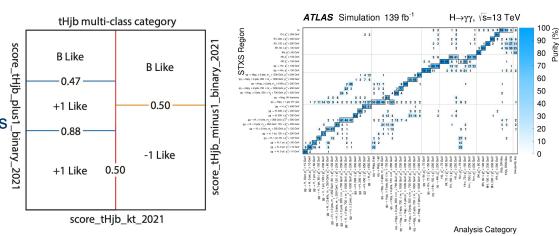

PRL 125 (2020) 061802

The STXS measurements with $H \rightarrow \gamma \gamma$

- Simplified Template Cross Sections (STXS) divides cross-section measurements in phase spaces (<u>arxiv</u> 1906.02754), which is sensitive to measure Higgs couplings
 - The ttH/tH cross-section in pTH bins with H → γγ JHEP (arXiv:2207.00348) further constrain the top-Higgs Yukawa coupling, and probe the impacts from new physics like CP-odd and FCNC processes

+ various qqH, qqH and VH phase spaces are also studied in the same publication gg o H $+ qq \rightarrow Z(q\bar{q})H + pp \rightarrow b\bar{b}H$ $p_{\mathrm{T}}^{H} < 200\,\mathrm{GeV}$ $200 \le p_{\rm T}^H \le 300 \,{\rm GeV}$ =0 jets $300 \le p_{\scriptscriptstyle
m T}^H \le 450 \,{
m GeV}$ = 1 jets $\geq 2\,\mathrm{jets}$ $m_{jj} < 350 \,\mathrm{GeV}$ $m_{jj} \ge 350 \,\mathrm{GeV}$ $p_{\mathrm{T}}^{H} \geq 450\,\mathrm{GeV}$ $p_{\mathrm{T}}^{H} < 10\,\mathrm{GeV}$ $p_{\mathrm{T}}^{H} < 60\,\mathrm{GeV}$ $p_{\mathrm{T}}^{H} < 120\,\mathrm{GeV}$ $10 \le p_{\rm T}^H \le 200 \,{\rm GeV}$ $60 \le p_{\rm T}^H < 120 \,{
m GeV}$ $p_{\mathrm{T}}^{H} > 120\,\mathrm{GeV}$ $120 \le p_{\mathrm{T}}^{H} \le 200 \, \mathrm{GeV}$

Shuo Han

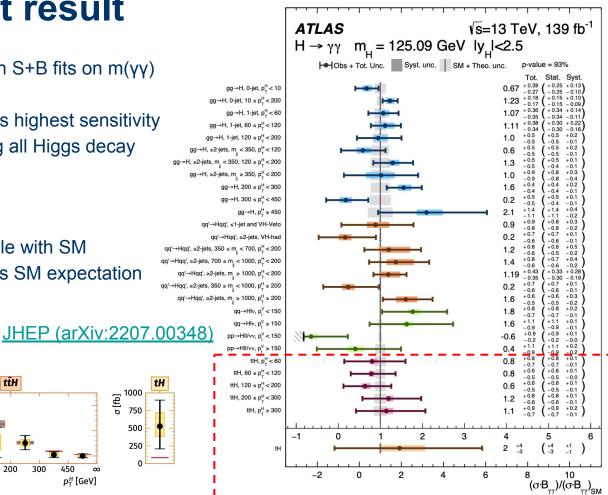


ttH/tH selection with STXS

- 1. ttH/tH vs Higgs boson production in other phase spaces
 - The five ttH, and two tH (tWH, tHjb) phase spaces are selected with multi-class BDT
- 2. In the ttH and tWH classes, use another ttH/tH vs background BDT
- 3. In the tHjb class, To further constrain top-Higgs coupling kt, optimized the tHjb categorization to separate CP-even/-odd, using 3 NN scores
 - CP even vs CP odd
 - CP even vs background
 - o CP odd vs background

The input variables are from γγ system, top candidates, top + Higgs system and forward jets

101 categories targeting to 28 phase spaces, including 9 categories targeting to the 6 ttH/tH phase spaces



STXS measurement result

The analysis extracted signal events with S+B fits on $m(\gamma\gamma)$

The Higgs → yy STXS measurement has highest sensitivity to constrain ttH/tH cross-sections among all Higgs decay channels in the combined measurement

ttH differential cross-section is compatible with SM tH cross-section 95% CL limit is 10 times SM expectation

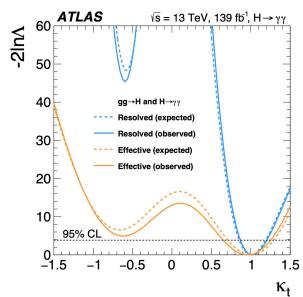
120

200

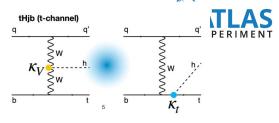
300 p_{T}^{H} [GeV] 500

250

10


Shuo Han

Nature 607 (2022) 52-59


The top-Higgs coupling with STXS

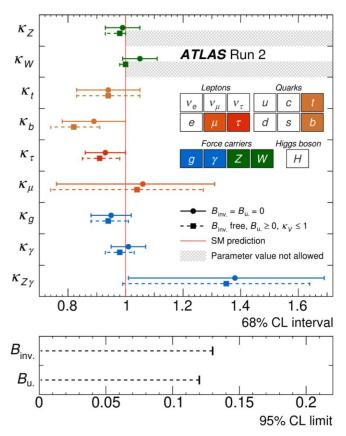
Top-Higgs coupling (κ,) is directly measured

- tH yields are parameterized as function of κ_t $y_i = \kappa_t^2 A + \kappa_V^2 B + \kappa_t \kappa_V C$
- $\kappa_t = 1.01 \pm 0.09$ if resolve the ggF and H $\rightarrow \gamma \gamma$ processes with κ_t
- Remove assumptions by taking ratios among loop vertices (κ_v, κ_a) , total width (κ_H) , vector and top couplings (κ_v, κ_t)

 $\kappa_{\rm t}$ = 0.95+0.15-0.16 , when $\kappa_{\rm g}$ and $\kappa_{\rm \gamma}$ set to 1.0 $\kappa_{\rm t}$ = 1.01±0.09 , when ggF and H \rightarrow γγ resolved with $\kappa_{\rm t}$

30 AILAS

<	30				
-2In	4			Ex	pected
Ċ	25			— Ob	served
	- i\			$[\kappa_{gy}, \Sigma]$	\ _{vg}] _
	20				_
		/:			=
	15		100	N.	_
		1	1	1	=
	10	<i>\i</i>	1/	/;	1
	10	<i>];</i>	//	/;	/4
	-		/	/;	//-
	5 95	% CL		····· /; ····	·····//
	_			1	
	0 -1.5	-1 -0	.5 0	0.5	1 1.5
					= \(\)
= 1	· /v	Daramete	r Recul	t Total	/\ _{ta}


Vs = 13 TeV, 139 fb', $H \rightarrow \gamma \gamma$

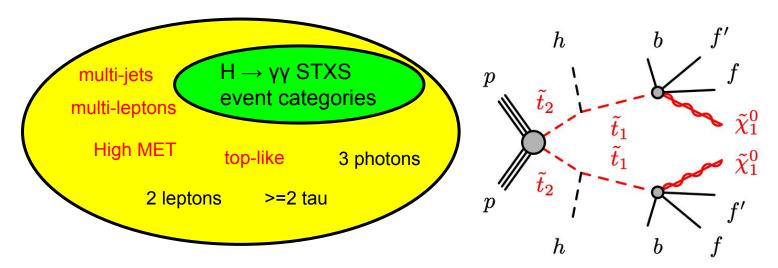
$\lambda_{ta} = \kappa_t / \kappa_a$	Parameter	Result	Total
$\lambda_{Vg} = \kappa_V / \kappa_g$	$K_{g\gamma h}$	1.02	±0.06
$K_{av} = K_v K_a / I$	λ_{Vg}	1.01	±0.11
'`gy '`y'`g''	λ_{tg}	0.95	$\pm_{0.16}^{0.15}$

Shuo Han

The top-Higgs coupling with STXS

Most precise coupling determination from ATLAS

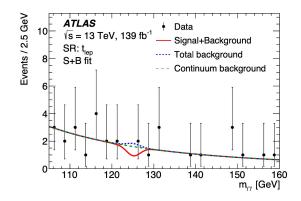
 $\kappa_{\rm Z}^{}, \kappa_{\rm W}^{}, \kappa_{\rm \tau}^{}, \kappa_{\rm g}^{}, \kappa_{\rm \gamma}^{}$ at a level of < 10%


 κ_{t} = 0.94±0.11 in combination, with other modifiers profiled

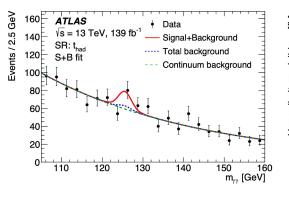
Model independent H+X search

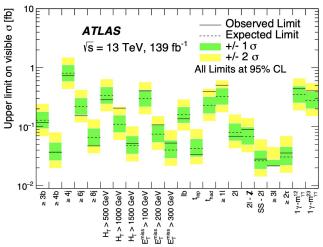
- STXS measurement covers various phase spaces, but there are many regions uncovered...
- Various of BSM models, like EW or strong SUSY and Flavor Changing Neutral Currents (FCNC) expect the production of Higgs boson and new particles
 - Including the new physics that arise with the top-Higgs sector
- A search (<u>JHEP (arXiv:2301.10486</u>)) for $H(\rightarrow \gamma \gamma)+X$ process is model-independent

H+X search: event selection


- 22 cut-based categories are defined with different final states, they are triggered by different BSM models
- The additional top-Higgs sectors can results in multiple b-jets, jets, leptons, high HT (scalar sum of jet pT), high missing ET and additional top candidates
- The searches are performed independently in all the signal regions, by S+B fits on the $m(\gamma\gamma)$

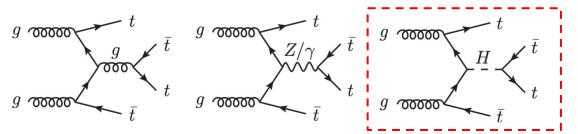
•		J/ FYDEDIMENIT
Target	Region	Detector Level
Heavy flavor	≥3 <i>b</i>	$n_{b-\text{jet}} \ge 3,85\% \text{ W.P.}$
Heavy havor	≥4 <i>b</i>	$n_{b-\text{jet}} \ge 4,85\% \text{ W.P.}$
	≥4j	$n_{\rm jet} \geq 4$, $ \eta_{\rm jet} < 2.5$
1220 010	≥6j	$n_{\rm jet} \geq 6$, $ \eta_{\rm jet} < 2.5$
High jet	≥8j	$n_{\rm jet} \geq 8, \eta_{\rm jet} < 2.5$
activity	$H_{\rm T}$ >500 GeV	$H_{\rm T} > 500~{\rm GeV}$
	$H_{\rm T} > 1000 \; {\rm GeV}$	$H_{\rm T} > 1000 {\rm \ GeV}$
	$H_{\rm T} > 1500 \; {\rm GeV}$	
	$E_{\rm T}^{\rm miss} > 100{\rm GeV}$	
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 200~{\rm GeV}$
	$E_{\rm T}^{\rm miss} > 300 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 300~{\rm GeV}$
	ℓb	$n_{\ell=e,\mu} \ge 1, n_{b-\text{jet}} \ge 1,70\% \text{ W.P.}$
Тор	t_{lep}	$n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b-\text{jet}} = 1,70\%$ W.P.
	t_{had}	$n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b-\text{jet}} = 1,$ 70% W.P., BDT _{top} >0.9
	≥1ℓ	$n_{\ell=e,\mu} \ge 1$
	2ℓ	$ee, \mu\mu$, or $e\mu$
Lepton	2ℓ-Z	ee , $\mu\mu$, or $e\mu$, $ m_{\ell\ell} - m_Z > 10$ if leptons are same flavor
	SS-2ℓ	$ee, \mu\mu$, or $e\mu$ with the same charge
	$\geq 3l$	$n_{\ell=e,\mu} \geq 3$
	≥2τ	$n_{\tau,had} \geq 2 \dagger$
Photon	$1 \gamma - m_{\gamma\gamma}^{12}$	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_1, γ_2
FHOIOH	$1 \gamma - m_{\gamma\gamma}^{23}$	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_2, γ_3

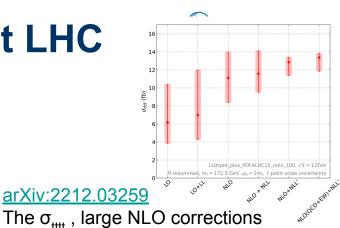

H+X search: results


- no obvious excess for H+X production.
 - The largest deviation from SM has a local significance 1.8σ in the HT > 1000 GeV region
 - o There's 1.7σ local significance in the top hadronic decay region
- The detector level limits are set on the H+X cross-sections, and the detector efficiencies of various BSM models are reported to utilize the limits

-0.7σ deviations wrt SM in the leptonic top decay region

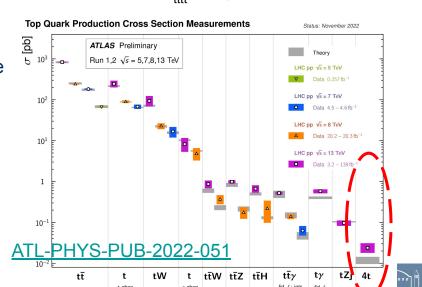
1.7σ significance in the handronic top decay region


JHEP (arXiv:2301.10486_



with off-shell Higgs boson - the observation of tttt

The four-top-quarks production at LHC

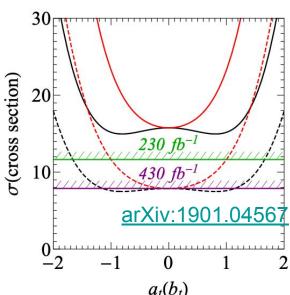


• The four-top production is rare: σ_{tttt} : ~12 fb (at 10⁻⁵ level of ttbar)

 However, four-top is distinct to measure SM and probe new physics, including top-Higgs coupling (Higgs as mediator in four-top production)

> Today's talk highlights the four-top-quarks observation in 2023 <u>EPJC 83 (2023) 496</u>

Top-Higgs Yukawa couplings with four-tops FATLAS

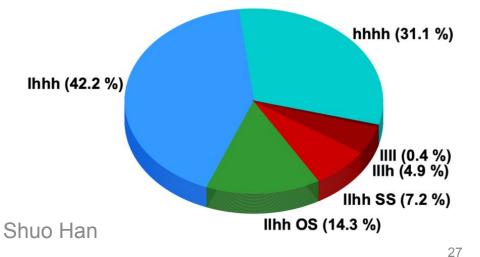

- There are various motivations of four-top cross-section measurement: SUSY (2HDM, Gluino), ttbar + X, composite top models, composite Higgs models (CERN-TH-2020-166)
- Among which, top-Higgs Yukawa coupling has unique impacts on the four top cross-section with quartic terms, so it is independent from Higgs coupling measurements with Higgs production/decays
 - σ_{HH} parameterization (arXiv:1901.04567) in terms of [a_t = k_t cos(α), b_t = k_t sin(α)] shows flat behavior for small couplings and rise above 1.5.

$$\mathcal{L} = -\frac{1}{\sqrt{2}} y_t \bar{t} (a_t + ib_t \gamma_5) th,$$

$$\sigma_{tttt} = c_0 + c_1 a_t^2 + c_2 b_t^2 + c_3 a_t^4 + c_4 a_t^2 b_t^2 + c_5 b_t^4$$

$$\sigma_{ttH} = A a_t^2 + B b_t^2$$

$$g = 000000 - \bar{t}$$


Shuo Han

The four-top decays

Each top quark decays to b quark + W boson The most sensitive channels for four-top are:

- 2 leptons same sign and 3 leptons (2LSS/3L), 13% branching ratio, highest sensitivity -- observation.
- 1 lepton and 2 leptons opposite sign (1L/2LOS), 57% branching ratio, large ttbar background.

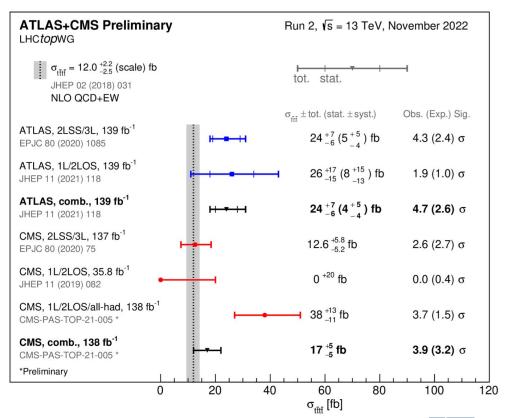
The complicated final state is a challenge

SSML

Main bkg

-tt+X

1LOS


Main bkg - tt+jets

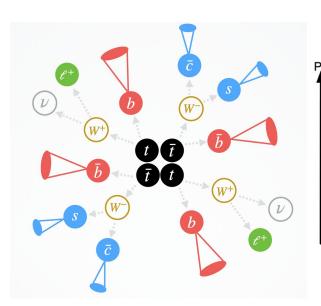
The publications before the observation

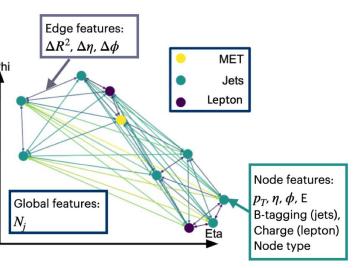
Before observation, both ATLAS and CMS measured four-top with Run-2 data, they declared evidences

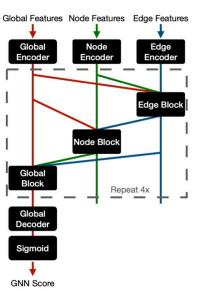
Then, both analyses decided to re-optimize with the same data, eventually there are observations in the single channel of 2LSS/3L

Object and event selections

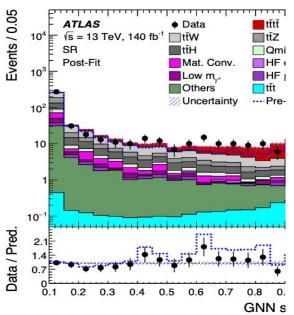
- 1. Triggers: single or di-lepton triggers
- 2. Low pT thresholds of (leptons, jets) of (15, 20 GeV)
- 3. Select the 2LSS / 3L events
- 4. Pre-selected region (SR):
 - a. 2LSS or 3L, Njet>=6, Nbjet>=2, HT>500 GeV
- 5. S+B fit on an event classifiers in the SR (next pages)


2 tight leptons	
	_ SS ee with ECIDS, Z Veto, $M_{ee} > 15~{\rm GeV}$
2LSS	– SS $e\mu$ with ECIDS
	SS μμ

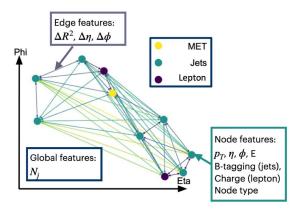

	SR
$t\bar{t}W$	130 ± 40
$t\bar{t}Z$	72 ± 15
tīH	65 ± 11
QmisID	27 ± 4
Mat. Conv.	16.5 ± 2.3
HF e	3.1 ± 1.0
HF μ	7.1 ± 1.2
Low m_{γ^*}	14.1 ± 2.0
Others	47 ± 11
$t\bar{t}t$	2.9 ± 0.9
Total bkg	390 ± 50
tītī	38 ± 4
Total	430 ± 50
Data	482

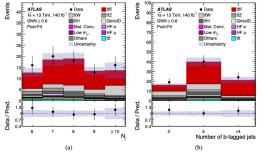

GNN multivariate analysis

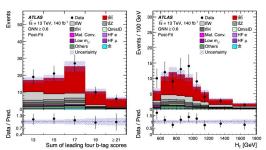
- The main challenge of the four-top signal extraction is the complicated final state
- The **Graphic Neural Network (GNN,** <u>arxiv 1806.01261 [graph_nets]</u>) combines information about all objects (jets, leptons, MET) from an event into a graph, with node, edge and global properties.
- Message passing architecture allows network to learn complex features of the four top process.


"Global" scores can pick-up signal events

"Edge" scores can reconstruct tops


GNN multivariate analysis


- "global score" is used and chosen as the event classifier and the observable in the pre-selected region
 - 10% higher sensitivity compared with the best BDT methods after fine tuning.



Good data/mc agreements on the GNN score are observed

Background modelings

 $NF_{t\bar{t}W^-(4jet)}$

 $NF_{t\bar{t}W^+(4jet)}$

 $1.27^{+0.25}_{-0.22}$

 a_0

 0.51 ± 0.10

 a_1

 $0.22^{+0.25}_{-0.22}$

SM physics processes: (~75%)

- ttW: a data-driven parameterization with 4 ttW control regions
- ttZ, ttH and others: using MC

Instrumental and fake backgrounds (~2	5%)	
---------------------------------------	-----	--

- Charge mis-ID: data-driven method
- Non-prompt leptons and (virtual) photon conversions: ttbar MC distributions, but correct the normalization with 4 non-prompt/fake control regions

NF _{Mat. Conv.}	$NF_{Low m_{\gamma^*}}$	NF _{HF} _e	NF_{HF}_{μ}
$1.80^{+0.47}_{-0.41}$	$1.08^{+0.37}_{-0.31}$	$0.66^{+0.75}_{-0.46}$	$1.27^{+0.53}_{-0.46}$

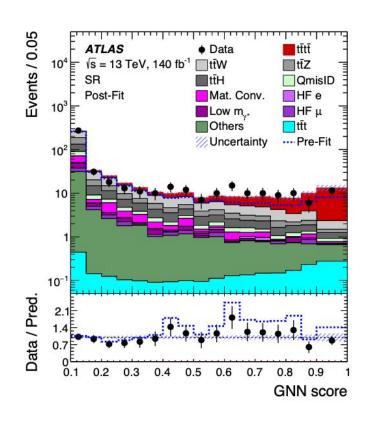
Fake leptons from light mesons, quark/gluon jets, others: using MC

8 control regions + 1 signal region, 8 background parameters

Shuo Han 32

Standard model σ_{tttt}

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}(\text{stat})^{+4.6}_{-3.4}(\text{syst}) \text{ fb} = 22.5^{+6.6}_{-5.5} \text{ fb}.$$


- The expectation σ^{SM} = 12.0 ± 2.4 fb , so σ_{ttt}/σ^{SM} = 1.9
- Background only hypothesis is rejected with 6.1σ (4.3 σ)

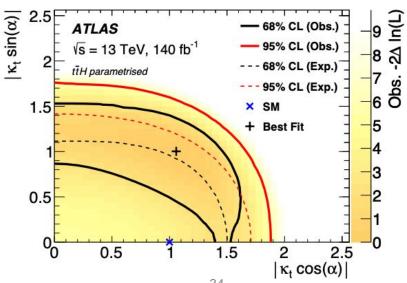
observed (expected) EPJC (arXiv:2303.15061)

$$\sigma_{t\bar{t}t\bar{t}} = 17.9^{+3.7}_{-3.5} \text{ (stat.)} ^{+2.4}_{-2.1} \text{ (syst.) fb} \quad \bullet \mathbf{S}_{t\bar{t}t\bar{t}} = 5.5 \text{ (4.9) } \sigma$$

$$\mathsf{CMS-PAS-TOP-22-013} \qquad \text{in agreement with SM}$$

in agreement with SM

Top-Higgs coupling and CP

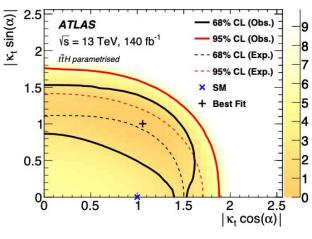

Two scenarios (k_{\star}, α) measurements

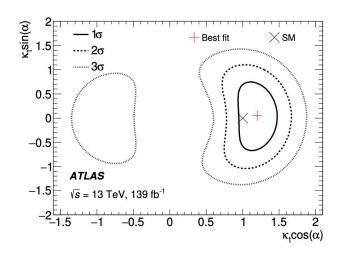
- 1) both four-top and ttH parameterized as a function of (k_t, α)
- 2) only four-top parameterized, ttH normalization is profiled as background parameter

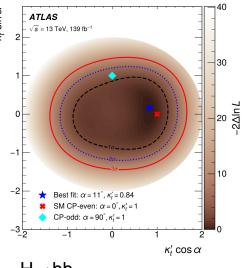
95% CL limits on $|k_t|$ (assuming CP-even, $\alpha = 0$)

• 1) ttH parameterized: $|k_t| < 1.8$ (1.6 expected), 2) ttH not parameterized: $|k_t| < 2.2$ (1.8 expected)

2D contour of CP-even ($|k_t \cos(\alpha)|$) and CP-odd ($|k_t \sin(\alpha)|$) contributions are compatible with the SM.



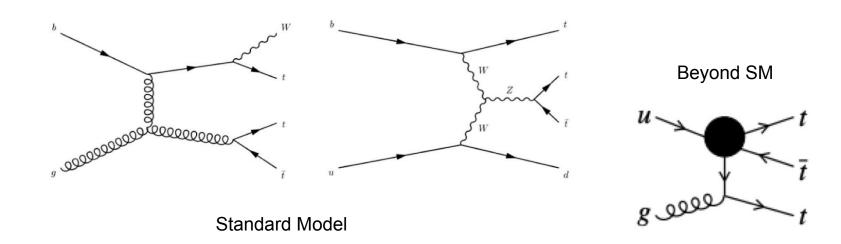



Top-Higgs Yukawa coupling

 Four-top analysis provides a distinct measurement compared with the on-shell Higgs measurements

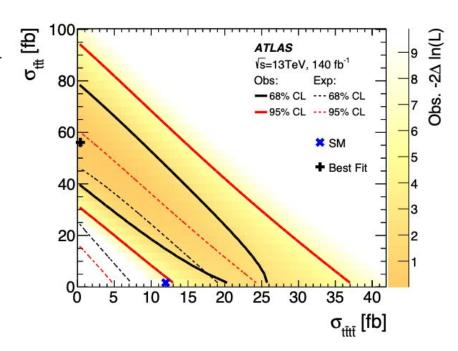
Four tops

H→γγ PRL 125 (2020) 061802


H→bb PLB (arXiv:2303.05974)

The tri-top production

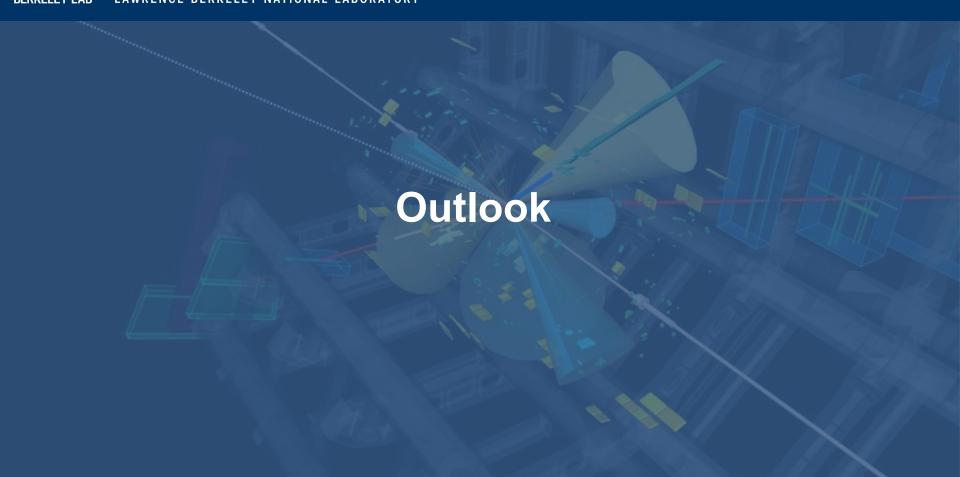
- The tri-top production (ttt+W, ttt+j) is another rare top production, $\sigma_{ttt}^{SM} \sim 1.67$ fb (NLO)
- Tri-top is sensitive to different new theories, like FCNC, 2HDM models
 - The modifications of tri-top may also come from new top-Higgs sectors
- Since the final state is very close to the four tops, the tri-top is measured simultaneously with the four-top production



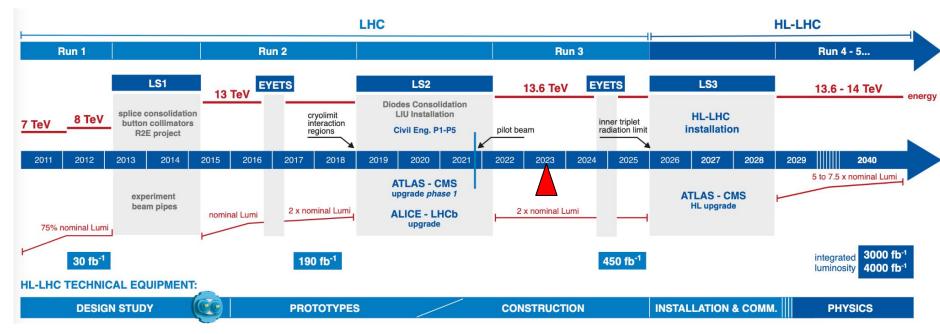
Tri-top and Four-top measurements

- Strong anti-correlations between tri-top and four-top
- The simultaneous measurement is compatible with SM within 2.1 standard deviation
- Limits are set on tri-top cross-sections assuming four top follows the SM or at its best-fit value

Processes	95% CL cross section interval [fb]		
	$\mu_{t\bar{t}t\bar{t}}=1$	$\mu_{t\bar{t}t\bar{t}}=1.9$	
tīt	[4.7, 60]	[0, 41]	
$t\bar{t}tW$	[3.1, 43]	[0, 30]	
$tar{t}tq$	[0, 144]	[0, 100]	

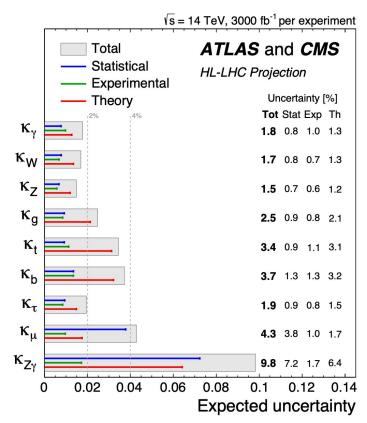


BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY



Run3 and HL-LHC

- Run-3 (ongoing, 2022-2025): expect 300 fb⁻¹ at 13.6 TeV
- Long shutdown for the HL-LHC (2026-2028): ATLAS phase-II upgrade
- HL-LHC (Run 4+, 2029-): expect 3000 fb⁻¹ at 14 TeV



The Higgs couplings at HL-LHC

- HL-LHC is expected to significantly increase the sensitivities of Higgs coupling to tops
- Total uncertainty on k, is expected to be 3.4% (now 10%)
 - in future e+e- collider it can be <2% at 240 GeV, while it can be further improved with higher ECM
- However, the top-Higgs coupling measurement will be dominated by systematic uncertainties
- There are more challenges in the HL-LHC studies

CERN-LPCC-2018-04

Challenges for future top-Higgs studies PATLAS

- The high pile-up with HL-LHC:
 - The ~200 actual interactions per bunch crossing (pile-up) challenges the reconstruction of analysis objects, for example the vertex efficiency of the H \rightarrow yy events will be < 60%
 - Solution: detector upgrades and its software utilization, like timing detectors
- Complicated physics processes:
 - The processes like multi-top and di-Higgs are complicated, but they are very unique to measure SM properties, it's hard to enhance their sensitivities. For example tri-top and four-top are not well distinguished in the current study
 - Solution: the lost info. from reconstruction, advanced machine learning (GNN and new methods)
- Large-statistic Monte Carlo
 - Huge computing power is required for maintaining the ratio between MC and data statistics with high luminosities, this is important for the event selection/classifier, modelings and systematic uncertainties
 - Solution: generative models, like a normalizing-flow method (arXiv:2303.10148) in the early Run 3 H $\rightarrow \gamma\gamma$ analyses
- ... more challenges and opportunities

Recap

We discussed why the top-Higgs Yukawa coupling and Higgs CP properties are important

Four studies of the top-Higgs Yukawa coupling and Higgs CP properties

- With on-shell Higgs
 - \circ CP and top-Higgs couplings with H \rightarrow $\gamma\gamma$ PRL 125 (2020) 061802
 - STXS measurements with top-Higgs couplings <u>JHEP (arXiv:2207.00348)</u>
- Searches
 - $H(\rightarrow \gamma \gamma) + X$ searches for new t-H sectors <u>JHEP (arXiv:2301.10486)</u>
- With off-shell Higgs
 - Four tops observation the heaviest final state ever observed EPJC 83 (2023) 496

More challenges and opportunities in LHC Run3 and HL-LHC!

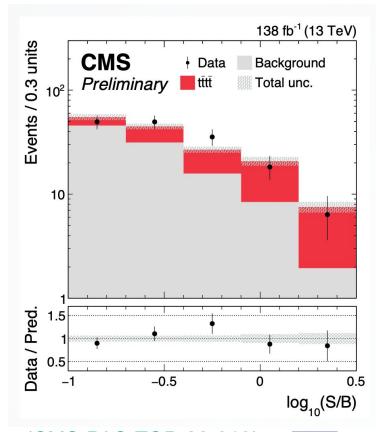
Thanks PKU-SJTU for hosting the seminar!

backup

The CMS result (2LSS/3L/4L)

$$\sigma_{\text{t\bar{t}t\bar{t}}} = 17.9^{+3.7}_{-3.5} \text{ (stat.) } ^{+2.4}_{-2.1} \text{ (syst.) fb}$$

$$\bullet S_{t\bar{t}t\bar{t}} = 5.5 (4.9) \sigma$$


•
$$\sigma_{t\bar{t}t\bar{t}}/\sigma_{t\bar{t}t\bar{t}}^{th.} = 1.3 \pm 0.3$$

•
$$\sigma_{\rm ttW}/\sigma_{\rm ttW}^{\rm th.}=1.4\pm0.1$$

Differences

in agreement with SM

- $\sigma_{\rm ttZ}/\sigma_{\rm ttZ}^{\rm th.}=1.3\pm0.1$
- CMS has a 4-lepton channel (tiny contribution), lepton channels are split, ATLAS merged 2LSS/3L channels.
- CMS is using multi-class BDT, ATLAS is using GNN
- CMS merged tri-top contribution with all the minor top productions, with a 20% uncertainty.
- CMS used data-driven method to estimate the non-prompt (ttbar) backgrounds, ATLAS used MC ttbar, with profiled normalizations.
- CMS measures four-top, ttW and ttZ simultaneously, ATLAS measures four-top, ttW and non-prompt (ttbar) simultaneously

(CMS-PAS-TOP-22-013)

