
⾼能物理中的⾼性能计算技术

Wei Sun (孙玮)

Computing Center, Institute of High Energy Physics

IHEP School of Computing 2023, 2023.8.16-18

Contents

• Introduction

• High performance computers and supercomputers

• Parallel programming models

• Summary and tips

• Hands-on exercises

Standard Model

Electromagnetic interaction

Weak interaction

Strong interaction

Introduction

Weinberg–Salam theory

Quantum Chromodynamics

classical computer quantum computer

Introduction

Physics Mathematics

Computer
science

QCD αs(M z) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e– jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

• analytical method at high energy

• numerical Monte Carlo method at low
energy

Introduction

ASCR/HEP Exascale Report [arXiv:1603.09303]

https://arxiv.org/abs/1603.09303

Introduction

High Performance Computing Numerical Linear Algebra on Supercomputers≈
my definition

High performance computers and supercomputers
https://www.top500.org/lists/top500/2023/06/

High performance computers and supercomputers
Supercomputer example: Sunway TaihuLight

Fu, H., Liao, J., Yang, J. et al., Sci. China Inf. Sci. 59, 072001 (2016).

Nvidia V100 GPU: 300 cards ≈

x86 CPU: cores≈ O(10000)

ARM CPU: cores≈ O(10000)

High performance computers and supercomputers
High performance clusters at IHEP

• Decades ago - customized processors

• QCDOC (QCD On a Chip)

• Nowadays - supercomputers / clusters

• TOP 500

• LQCD awarded 1995,1998,2006 Goldon Bell Prize and 2018 finalist

High performance computers and supercomputers
Example in HEP: LQCD with HPC

Before CUDA release!

Parallel programming models
Common programming language in HPC

• Fortran (Formula Translation)

• Oldest high level programming language, first compiler released in 1957

• Designed for numerical and scientific computing

• Highly efficient, still widely used in high performance computing today

• C

• Flexible, efficient, …

• C++

• Efficient, abstract, multi-paradigm (procedural, object oriented, functional)

• Assembly

• Highly efficient but not portable across different processor architecture

• Python

• Slow in python itself, but with great library such as Scipy, very suitable for  
data processing, analysis and visualization

• MPI (Message Passing Interface)

• MPI is a communication protocol for programming parallel computers

• The dominant programming model in high performance computing today

• Support point-to-point and collective communication

• MPI version 1.0 standard released in 1994

• Directly callable from C, C++, Fortran

• Very suitable for distributed memory system, therefore supported by all kinds of supercomputers

• Major implementation

• MPICH (https://www.mpich.org/)

• Open MPI (https://www.open-mpi.org/)

• Many others derived from MPICH and Open MPI, such as Intel MPI, Cray MPI, IBM Spectrum MPI

Parallel programming models
MPI + X model (cluster level + node level + processor level + instruction level)

https://www.mpich.org/
https://www.open-mpi.org/

Parallel programming models
MPI Basics

• Compile: mpicc hello_world.c -o hello_world

• Run: mpirun -np 4 hello_world

• NOTE: MPI is a library and mpicc is not a compiler, it is a wrapper

over regular C compiler

• Use mpicc -show to see the compile and link flags

• gcc -I /path to MPI/include -L /path to MPI/lib -lmpi

output

• Total 400+ APIs

Parallel programming models
MPI Basics (point-to-point communication)

• Total 400+ APIs

Parallel programming models
MPI Basics (collective communication)

A0P0

P1

P2

P3

A0

A0

A0

A0

MPI_Bcast

A0 B0 C0 D0P0

P1

P2

P3

A0

B0

C0

D0

MPI_Scatter

MPI_Gather

A0

A1

A2

A3

P0

P1

P2

P3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

A0 A1 A2 A3

MPI_Allgather

A0

A1

A2

A3

P0

P1

P2

P3

A0 A1 A2 A3⊗ ⊗ ⊗

A0 A1 A2 A3⊗ ⊗ ⊗

A0 A1 A2 A3⊗ ⊗ ⊗

A0 A1 A2 A3⊗ ⊗ ⊗

MPI_Allreduce

: SUM, PRODUCT, MIN, MAX, etc.⊗

Parallel programming models
OpenMP (Open Multi-Processing)

• Pros

• API that supports various instruction set architectures, operating system, and C, C++, Fortran

• First standard released in 1997

• Compiler directive based

• Simple, flexible, portable, scalable

• Easy to modify existing serial code into parallel

• OpenMP 4.0 and later version support GPUs

• Cons

• Multi-threading programming is easy  
to implement but hard to debug in general

• Need to deal with race condition very carefully

• Only used for parallelism within a node

• Major implementation

• GCC, Intel, Clang

source: wikipedia

Parallel programming models
OpenMP hello world example

Compile: gcc -fopenmp hello_world.c -o hello_world

Run: ./hello_world # use all cores / hardware threads available on single node

 OMP_NUM_THREADS=4 ./hello_world # use 4 cores / hardware threads

Parallel programming models
OpenMP program monitored with htop

Parallel programming models
CUDA for GPU computing

• CUDA (Compute Unified Device Architecture)

• CUDA is a parallel programming framework and API for general purpose GPU (GPGPU) computing

• Developed by Nvidia and support Nvidia’s GPUs

• Supported Tesla -> Fermi -> Kepler -> Maxwell -> Pascal -> Volta -> Turing -> Ampere -> Hopper

• Directly callable from C, C++, Fortran

• Need CUDA Toolkit to compile

• Free but not open source

• Multi-node GPU programming with CUDA-aware MPI

• The HIP (Heterogeneous Interface for Portability)  
developed by AMD can is portable both for  
AMD and Nvidia’s GPUs, and also free and open source source: wikipedia

Details in Friday’s lectures

• Vectorization: supported by x86 (SSE, AVX, AVX2, AVX512 etc.), Arm (NEON, SVE),
PowerPC (AltiVec) etc.

• Implementation: optimized math libraries (such as Intel MKL), inline assembly, intrinsic
function

A1

A2

A3

A4

B1

B2

B3

B4

+ =

C1

C2

C3

C4

Parallel programming models
SIMD (Single Instruction Multiple Data)

#include<arm_neon.h>
//compile: g++ -O3 -march=armv8-a -o exe src.c  

void add_neon(float* out, const float* input1,
 const float* input2, int N)

{
 for(int i=0; i<N; i+=4){
 float32x4_t v1 = vld1q_f32(input1+i);
 float32x4_t v2 = vld1q_f32(input2+i);

 float32x4_t v0 = vaddq_f32(v1, v2);
 vst1q_f32(out+i, v0);
 }
}

#include<immintrin.h>
//compile: g++ -O3 -mavx -o exe src.c  

void add_avx(float* out, const float* input1,
const float* input2, int N)

{
 for(int i=0; i<N; i+=8){
 __m256 v1 = _mm256_load_ps(input1+i);
 __m256 v2 = _mm256_load_ps(input2+i);

 __m256 v0 = _mm256_add_ps(v1, v2);
 _mm256_store_ps(out+i, v0);
 }
}

void add(float* out, const float* input1, const float* input2, int N)
{
 for(int i=0; i<N; i++){

out[i] = input1[i] + input2[i];
 }
}

No explicit SIMD

x86 AVX SIMD ARM NEON SIMD

Parallel programming models
SIMD with intrinsic functions

Parallel programming models
Software build tools

Makefile

GNU Autotools

CMake

Build: make

Build: autoreconf  

 ./configure

 make && make install

Build: mkdir build && cd build

 cmake ..

 make && make install

• Covered basics of high performance computing programming model and tools
widely used in high energy physics

• Tips:

• Select the right programming model and tools before writing the code

• Correctness is the top priority, NOT performance at the beginning of the
software development

• Use well established and tested libraries, do NOT reinvent the wheels
unless you know what you are doing

• Use version control system such as git for code development, use github
or gitlab for collaborative development

Summary and tips

Hands-on exercises
• MPI

1. Hello world

2. Compute with formula

• OpenMP

1. Compute

π π2

6
=

∞

∑
n=1

1
n2

=
1
12

+
1
22

+
1
32

+
1
42

+ . . .

π

