

Recent results on hadrons at Belle and Belle II experiments

Chengping Shen (Fudan University)

[第八届手征有效场论研讨会](https://indico.ihep.ac.cn/event/20010/), 河南大学, 2023年10月27日至10月31日

logo designed by undergraduate student...

asymmetric e⁺e⁻ collider producing B mesons

Belle(II), LHCb side by side

Belle (II)

 $e^+e^- \rightarrow Y(4S) \rightarrow b\overline{b}$ at $Y(4S)$: 2 B's $(B^0 \text{ or } B^+)$ and

nothing else \Rightarrow clean events

flavour tagging, B tagging, missing energy

 \Rightarrow initial conditions are precisely known $\sigma_{\rm b\overline{b}} \sim 1 \text{ nb} \Rightarrow 1 \text{ fb}^{-1}$ produces 10^6 B $\sigma_{\rm h\overline{h}}/\sigma_{\rm total} \sim 1/4$

LHCb

 $p p \rightarrow b b X$ production of B^* , B^0 , B_s , B_c , Λ_b ... but also a lot of other particles in the event \Rightarrow lower reconstruction efficiencies

 $\sigma_{b\overline{b}}$ much higher than at the Y(4S)

b b production cross-section at $LHCb \sim 500,000 \times BaBar/Belle$!! $\sigma_{\rm b\overline{b}}/\sigma_{\rm total}$ much lower than at the Y(4S) higher luminosity \Rightarrow lower trigger efficiencies **B** mesons live relativey long mean decay length $\beta \gamma c \tau$ ~ 200 μ m mean decay length $\beta \gamma c \tau \sim 7$ mm (displaced vertices) data taking $period(s)$ [run I: 2010-2012] = 3 fb⁻¹ $[1999-2010] = 1$ ab⁻¹ [run II: 2015-2018] = 6 fb⁻¹ $[2019...] = ...$ (near) future Belle II from 2019 \rightarrow 50 ab⁻¹ LHCb upgrade from 2022

A diversified physics program

Due to the time limitation, today I mainly focused on the quarkonium, charmed baryons, exotic states,… from Belle and Belle II.

PTEP 2019 123C01

From KEKB to SuperKEKB

Datasets at Belle and Belle II

Data taking: 1999 – 2010 On/off/Scan Υ(nS) peaks 772M \overline{B} events $\mathcal{O}(4S)$

- Collected \sim 424 fb⁻¹ around $Y(4S)$ until now
- LS1 starts in summer 2022 to fully install the pixel detector and accelerator machine study
- Operation will be resumed around the end of 2023

Bottomonium • Below BB thresholds – bottomonia are

- well described by the potential models.
- Above \overline{BB} thresholds bottomonia express unexpected properties:
- Two charged Z_b^+ states are observed $(B^{(*)}\overline{B}^*$ molecular?)
- Hadronic transitions are strongly enhanced (OZI rule violation);
- η transitions are not suppressed compare to $\pi^+\pi^-$ transitions (heavy quark spin-symmetry violation);

Conventional bottomonium (pure $b\overline{b}$ states) Bottomonium-like states (mix of $b\overline{b}$ and $B\overline{B}$) Exotic charged states (Z_b^+)

Discovery of Y(10753)

- Belle: several ~ 1 fb⁻¹ scan points below $Y(5S)$
- New structure observed in $\pi^+\pi^-\Upsilon(nS)$ transitions

Theoretical interpretations

Godfrey and Moats, PRD 92, 054034 (2015)

Mass does not match Y(3D) theoretical predictions,

and D-wave states are not seen in e⁺e⁻ collisions.

• $Y(4S) - Y(3D)$ mixing can be enhanced due to hadron loops.

❑ Conventional bottomonium

Eur. Phys. J. C 80, 59 (2020) Phys. Rev. D 101, 014020 (2020) Phys. Rev. D 102, 014036 (2020) Phys. Lett. B 803, 135340 (2020) Phys. Rev. D 104, 034036 (2021) Prog. Part. Nucl. Phys. 117, 103845 (2021) Eur. Phys. J. Plus 137, 357 (2022) Phys. Rev. D 105, 114041 (2022) Phys. Rev. D 106, 094013 (2022) Phys. Rev. D 105, 074007 (2022)

❑ Hybrid

Phys. Rept. 873, 1 (2020) Phys. Rev. D 104, 034019 (2021)

❑ Tetraquark

Chin. Phys. C 43, 123102 (2019) Phys. Lett. B 802, 135217 (2020) Phys. Rev. D 103, 074507 (2021) Phys. Rev. D 107, 094515 (2023)

Unique scan data near $\sqrt{s} = 10.75$ GeV

- In November 2021, Belle II collected 19 fb⁻¹ of unique data at energies above the Y(4S): four energy scan points around 10.75 GeV.
- Belle II collected the data in the gaps between Belle energy scan points.
- Physics goal: understand the nature of the Y(10753) energy region.

Motivation to search for $Y(10753) \rightarrow \omega \chi_{bI}$

Theory: Branching fractions of 10^{-3} for $Y(10753) \rightarrow \omega \chi_{bl}$ [PRD 104, 034036 (2021)] and $Y(10753) \rightarrow \pi^+ \pi^- Y(nS)$ [PRD 105, 074007 (2022)] assuming $Y(4S)$ - $Y(3D)$ mixing state for Υ(10753).

Charmonium sector:

- Two close peaks observed in the cross sections for $e^+e^- \to \pi^+\pi^-J/\psi$ by BESIII and $e^+e^- \to \pi^+\pi^-J/\psi$ $\pi^+\pi^-\Upsilon(nS)$ by Belle, respectively, may suggest similar nature.
- Y(4220) $\rightarrow \gamma X(3872)$ and $\omega_{X_{c0}}$ observed by BESIII.

13

• So we expect the observations of $Y(10753) \rightarrow \gamma X_b$ and ωX_{bI} .

Observation of $Y(10753) \rightarrow \omega \chi_{bI}$

Two dimensional unbinned maximum likelihood fits to the M(yY(1S)) and M($\pi^+\pi^-\pi^0$) distributions. $\qquad \qquad$ Channel $\left[\begin{array}{cc} \sqrt{s} \text{ (GeV)} \end{array}\right] \qquad \mathsf{N}^{\text{sig}}$

PRL 130, 091902 (2023)

The $e^+e^- \rightarrow \omega \chi_{bJ}$ (J = 1, 2) cross sections peak at Υ(10753).

Discussion

σ(e+e−→χ bJ(1P)ω) $\overline{\sigma(e^+e^-\!\!\rightarrow\!\!Y(nS)\pi^+\pi^-)}$ \sim \sim 1.5 at \sqrt{s} = 10.745 GeV [PRL 130, 091902 (2023)] ~ 0.15 at \sqrt{s} = 10.867 GeV [PRL 113, 142001 (2014)]

❑ Υ(5S) and Υ(10753) have same quantum numbers and similar masses, but the difference on the above ratio is large. This may indicate **the difference in the internal structures of these two states**.

$$
\frac{\sigma(e^+e^- \to \chi_{b1}(1P)\omega)}{\sigma(e^+e^- \to \chi_{b2}(1P)\omega)} = 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV [PRL 130, 091902 (2023)]}
$$

❑ **Contradicts the expectation for a pure D−wave bottomonium state of 15** [Phys. Lett. B 738, 172 (2014)]

❑ **An observation of 1.8σ difference with the prediction for a S−D−mixed state of 0.2** [Phys. Rev. D 104, 034036 (2021)]

Measurement of the energy dependence of the $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$ and $B^* \overline{B}^*$ cross sections $\sqrt{s} = 10.745$ GeV, 9.8 fb⁻¹

• The $B^{(*)}\overline{B}^{(*)}$ are expected to be dominant decay channels for excited bottomoniumlike states. Their measurements are critical for understanding these states.

Method:

One B meson is reconstructed in hadronic channels, and signals are identified using

$$
M_{\text{bc}} = \sqrt{(E_{\text{cm}}/2)^2 - P_{\text{B}}^2}
$$

 $\Delta E = E_B - E_{\rm cm}/2$

to be dominant
\nbottomonium-
\nments are
\nthese states.
\n
\n(d in hadronic
\n
$$
-P_{\text{B}}^2
$$

\n $-\frac{P_{\text{B}}^2}{2}$
\n $\Delta E = E_B - E_{\text{cm}}/2$
\n $\Delta E' = \Delta E + M_{\text{bc}} - m_B$
\n $\Delta E' = \Delta E + M_{\text{bc}} - m_B$
\n $\Delta E' = \Delta E + M_{\text{bc}} - m_B$
\n $\Delta E' = \Delta E + M_{\text{bc}} - m_B$
\n $\Delta E' = \Delta E + M_{\text{bc}} - m_B$
\n $\Delta E' = \Delta E + M_{\text{bc}} - m_B$

M_{bc} fit at scan energies

- $e^+e^- \rightarrow B\overline{B}$, $B\overline{B}^*$ and $B^*\overline{B}^*$ signals at $\sqrt{s} \sim 10.75$ GeV can be clearly observed
- Contribution of $Y(4S) \rightarrow B\overline{B}$ production via ISR is visible well (black dotted histograms)
- At \sqrt{s} =10.653 GeV, the sharp cut of the data at right edge is due to threshold effect

Energy dependence of the cross sections

Solid curve – combined Belle + Belle II data fit Dashed curve – Belle data fit only 19

New: rapid increase of $\sigma_{\mathbf{R}^*\bar{\mathbf{R}}^*}$ above the threshold

- Similar behaviour was seen for $D^* \overline{D}^*$ cross section (PRD 97, 012002 (2018))
- Possible interpretation: resonance or bound state ($B^* \overline{B}^*$ or $b\overline{b}$) near threshold (MPL A 21, 2779 (2006))
- Also explains a narrow dip in $\sigma(e^+e^- \rightarrow B\overline{B}{}^*)$ near B^{*}B^{*} threshold by destructive interference between $e^+e^- \rightarrow B\overline{B}^*$ and $e^+e^- \rightarrow B^*\overline{B}^* \rightarrow B\overline{B}^*$
- Inelastic channels $[\pi^+\pi^-\Upsilon(nS)$ and $h_b(1P)\eta]$ could also be enhanced (PRD 87, 094033 (2013))

Search for
$$
e^+e^- \rightarrow \omega \eta_b(1S)
$$
 and $e^+e^- \rightarrow \omega \chi_{b0}(1P)$

❑ Tetraquark (diquark-antidiquark) interpretation of this state predicts enhancement of $Y(10753) \rightarrow \omega \eta_{b}(1S)$ transition [Chin. Phys. C 43, 123102 (2019)].

$$
\frac{\Gamma(\eta_b~\omega)}{\Gamma(\Upsilon~\pi^+\pi^-)}\sim 30
$$

□ The e^+e^- → ω $\chi_{bJ}(1P)$ (J = 1, 2) was found to be enhanced at \sqrt{s} = 10.745 GeV (PRL 130, 091902 (2023)). The $e^+e^-\rightarrow\omega\chi_{b0}(1P)$ transition was not observed due to low $\mathcal{B}[\chi_{b0}(1P) \to \gamma \Upsilon(1S)] = (1.94 \pm 0.27)\%$.

 \Box We reconstruct only $ω \rightarrow π^+π^-π^0$ and use its recoil mass to identify the signal.

$$
M_{\rm recoil}(\pi^+\pi^-\pi^0)=\sqrt{\left(\frac{E_{\rm c.m.}-E^*}{c^2}\right)^2-\left(\frac{p^*}{c}\right)^2}
$$

Recoil mass spectra of $\pi^+\pi^-\pi^0$

21

Born cross sections

Preliminary

Upper limits at the 90% CL are set using the Feldman-Cousins method [Phys. Rev. D 57, 3873 (1998)]

Tetraquark model in Ref. [CPC 43, 123102 (2019)]: (2019)]:

$$
\Gamma(\Upsilon(10753) \to \eta_b(1S)\omega) = 2.64^{+4.70}_{-1.69} \text{ MeV}
$$
\n
$$
\Gamma(\Upsilon(10753) \to \Upsilon\pi^{+}\pi^{-}) = 0.08^{+0.20}_{-0.06} \text{ MeV}
$$

 $\sigma^B(\Upsilon(10753) \to \eta_b(1S)\omega) < 2.5$ pb
 $\sigma^B(\Upsilon(10753) \to \Upsilon(2S)\pi^+\pi^-) \approx (3 \pm 1)$ pb

Our results do not support the prediction within the tetraquark model that the $Y(10753) \rightarrow \omega \eta_{\rm b}(1S)$ decay is enhanced.

Updated measurement of the energy dependence of the $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(nS)$ cross sections Preliminary

 \circ

 \circ

 \circ

 \circ

- $\Delta M = M(\pi^+\pi^- \mu^+ \mu^-) M(\mu^+ \mu^-)$ is defined to extract the signal.
- Significant signals for $\Upsilon(1S,2S)\pi^+\pi^-$ at \sqrt{s} $= 10.745, 10.806$ GeV
- No evident signals for $Y(3S)\pi^+\pi^-$
- Significance for $\Upsilon(1S)\pi^+\pi^-$ at \sqrt{s} $= 10.653$ GeV is only $1.7 \sim 2.3\sigma$, depending on different background assumptions.

Intermediate state $-M(\pi\pi)$

Belle L

Dots: events in signal region Green: nearest sidebands, scaled with area Red dashed: signal MC, simulated uniformly Red solid: re-weighted signal MC

 $\Upsilon(1S)\pi\pi$: Consistent with PHSP $(\chi^2 = 0.98, 1.14)$

 $\Upsilon(2S)\pi\pi$: Not consistent with PHSP $(\chi^2 = 3.45, 2.43)$

Intermediate state $-M_{\text{recoil}}(\pi)$

- No evidence of $Z_h(10610/10650)$.
- Upper limits estimated at 90% C.L.

Preliminary

Updated cross sections

Fit with three coherent BW, convoluting a Gaussian modeling energy spread:

$$
\sigma \propto |\sum_{i=1}^{3} \frac{\sqrt{12\pi \Gamma_{i}B_{i}}}{s-M_{i}+iM_{i}\Gamma_{i}} \cdot \sqrt{\frac{f(\sqrt{s})}{f(M_{i})}}e^{i\phi_{i}}|^{2} \otimes G(0,\delta E)
$$

All parameters are free, except $\delta E = 0.0056~$ GeV Parameters of Y(10753): \bm{M} $= 10756.3 \pm 2.7$ _(stat.) \pm 0.6_(syst.)MeV/ c^2 $Γ = 29.7 + 8.5$ _(stat.) $+ 1.1$ _(syst.)MeV

Relative ratios of cross section at different resonance peak s

	, $\varUpsilon(10753)$ S/2S v $\sigma(15)$	$\boldsymbol{\tau}$ (10753) $\kappa_{\sigma(3S/2S)}$	$\varUpsilon(5S)$ $\bm{\tau}$ (1S/2S) ັ σ (1.)	$\varUpsilon(5S)$ \mathbf{D}^{\perp} K. $\sigma(3S/2S)$	$\varUpsilon(6S)$ \mathbf{T}^{\perp} r(1S/2S) 'v $\sigma(1S)$	$\varUpsilon(6S)$ $\bm{\tau}$ \mathcal{L} $\sigma(3S/2S)$
Ratios	$.46^{+0.15}_{-0.12}$	$\overline{0.10}^{+0.05}_{-0.04}$	$\overline{0.45^{+0.04}_{-0.04}}$	$\overline{0.32^{+0.04}_{-0.03}}$	$0.64_{-0.13}^{+0.23}$	-0.16 $0.41^{+0.10}_{-0.12}$

■ **Motivation**

[PRD 107, 032003 \(2023\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.032003)

- For the charmed baryon weak decays: $B_c \rightarrow B + M$, there are six topological diagrams. Among them, T and C are factorizable, while C' and E_{1-3} are nonfactorizable.
- All the nonfactorizable diagrams contribute to $\Lambda_c^+ \to \Sigma^+ \eta(\eta')$.

W-exchange diagrams E_1 E_2 E_3

■ Motivation 2023 [PRD 107, 032003 \(2023\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.032003)

- Theoretical predictions on the branching fractions and asymmetry parameters of $\Lambda_c^+\to \Sigma^+\eta(\eta')$ vary across.
- Branching fractions of $\Lambda_c^+\to \Sigma^+\eta(\eta')$ are measured with large uncertainty ($\delta B/B>40\%$) [PDG]. Decay asymmetry parameters for these two modes have never been measured.

Branching fractions

Asymmetry parameters

■ Measurements of branching fractions of $\Lambda_c^+ \to \Sigma^+ \eta$ and $\Lambda_c^+ \to \Sigma^+ \eta'$ ($\Sigma^+ \to p \pi^0$; $\eta' \to \eta \pi \pi$; $\eta \to \gamma \gamma$)

full Belle datasets

Method:

$$
\frac{B(\Lambda_c^+ \to \Sigma^+ \eta/\Sigma^+ \eta')}{B(\Lambda_c^+ \to \Sigma^+ \pi^0)} = \frac{y(\Lambda_c^+ \to \Sigma^+ \eta/\Sigma^+ \eta')}{B_{\rm PDG} \times y(\Lambda_c^+ \to \Sigma^+ \pi^0)}
$$

(y is the efficiency-corrected yield).

■ Measurements of asymmetry parameters of $\Lambda_c^+\to \Sigma^+\pi^0$, $\Sigma^+\eta$, and $\Sigma^+\eta'$

• $\alpha_{\Sigma^+\pi^0} = -0.48 \pm 0.02 \pm 0.02$

- $≥$ agrees with the world average value: -0.55 ± 0.11 .
- \triangleright with much improved precision.
- \triangleright The consistency with $\alpha_{\Sigma^0\pi^+} = -0.463 \pm 0.016 \pm 0.008$ indicates no isospin symmetry broken.

•
$$
\alpha_{\Sigma^+ \eta} = -0.99 \pm 0.03 \pm 0.05
$$
 and $\alpha_{\Sigma^+ \eta\prime} = -0.46 \pm 0.06 \pm 0.03$

measured for the first time. $\frac{30}{20}$

Branching fractions of $\Lambda_c^+ \to pK_S^0 K_S^0$, $pK_S^0 \eta$

■ Motivation

[PRD 107, 032004 \(2023\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.032004)

- Precise measurements of branching fractions of charmed baryon weak decays are useful for studying the dynamics of charmed baryons and testing the predictions of theoretical models.
- No result of branching fraction for $\Lambda_c^+ \to p K_S^0 K_S^0$ is reported. According to theoretically results based on SU(3)F symmetry [EPJC 79 (2019) 946], we estimate $\sim O(10^3)$ signal yield at Belle.
- \bullet Measured branching fraction $B(\Lambda_c^+ \to p K_S^0 \eta) = (4.15 \pm 0.90) \times 10^{-3}$ has large uncertainty (δΒ/Β~20%) [PDG]. We target at an improved precision of BF.
- \bullet Check Dalitz-plot for the intermediate resonances existence, e.g. $N^*(1535)$.

Branching fractions of $\Lambda_c^+ \to pK_S^0 K_S^0$, $pK_S^0 \eta$

Signal Yield Extraction

Efficiency Plane

- For reference mode, directly use the efficiency from MC.
- For signal modes, possible intermediate structures affect on final averaged efficiencies. Therefore, we use the Dalitz-plot-based efficiency planes.

Branching fractions of $\Lambda_c^+ \to p K_S^0 K_S^0$, $p K_S^0 \eta$

Plots (c, f) show the average signal efficiency in bins across the Dalitz plane. The red curves show the edges of kinematic phase-space region of the decays.

◼ **Branching fraction**

$$
\frac{B(\Lambda_c^+ \to pK_S^0 K_S^0, pK_S^0 \eta)}{B(\Lambda_c^+ \to pK_S^0)} = \frac{y(\Lambda_c^+ \to pK_S^0 K_S^0, pK_S^0 \eta)}{B_{\text{PDG}} \times y(\Lambda_c^+ \to pK_S^0)}
$$
 (*y* is the efficiency-corrected yield).

$$
■ \frac{B(\Lambda_c^+ \to pK_S^0 K_S^0)}{B(\Lambda_c^+ \to pK_S^0)} = (1.48 \pm 0.08 \pm 0.04) \times 10^{-2}
$$

\n
$$
B(\Lambda_c^+ \to pK_S^0 K_S^0) = (2.35 \pm 0.12 \pm 0.07 \pm 0.12) \times 10^{-4}
$$

\n
$$
First observation
$$

- $\bullet \frac{B(\Lambda_c^+ \rightarrow pK_S^0 \eta)}{B(\Lambda_c^+ \rightarrow pK_S^0 \eta)}$ $\frac{B(\Lambda_c^2 \to p_{K_S^2} \eta)}{B(\Lambda_c^2 \to p_{K_S^0})} = (2.73 \pm 0.06 \pm 0.13) \times 10^{-1}$ $\rightarrow B(\Lambda_c^2 \to p_{K_S^0} \eta) = (4.35 \pm 0.10 \pm 0.20 \pm 0.22) \times 10^{-3}$
	- \triangleright Consistent with world average value (4.15 \pm 0.90) × 10⁻³ and threefold improvement in precision.

Search for the semileptonic decays of $\Xi_c^0 \rightarrow \Xi^0 \ell^+ \ell^-$ at Belle

Motivation

- Experimental study of baryonic semileptonic decays can test the Lepton Flavor University (LFU) and provide important inputs for theoretical studies.
- Few neutrino-less decays were observed experimentally[1-4].
- Only upper limits were set for $\Lambda_c \to p\ell^+\ell^-$ decay for the charmed baryons[5,6].
- Both W-exchange and FCNC process contribute to $\Lambda_c\to p\ell^+\ell^-$, while some anomalies were reported for FCNC processes in B meson decays.
- The study of $\Xi_c^0\to\Xi^0\ell^+\ell^-$ decays, related with $\Lambda_c\to p\ell^+\ell^-$ under SU(3) flavor symmetry [PRD 103, 013007(2021)], have not been measured experimentally.
- It will help the understanding of the charmed baryonic semileptonic decays, and allows an LFU test.

Search for the semileptonic decays of $\Xi_c^0 \rightarrow \Xi^0 \ell^+ \ell^-$ at Belle

Overview

- Signal Ξ_c^0 MC samples are generated in $e^+e^-\rightarrow c\bar{c}$ process.
- Using full $\sim 1ab^{-1}$ Belle data, we directly reconstruct the $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$ decays.

Results

- No significant signals are observed for the $\Xi^0\ell^+\ell^-$ invariant-mass spectra.
- 90% credibility upper limits on branching fractions are set:

$$
\triangleright \ \mathcal{B}(\Xi_c^0 \to \Xi^0 \ell^+ \ell^-)/\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) < 6.7 \ (4.3) \times 10^{-3} \text{ and}
$$

- > $\mathcal{B}(\Xi_c^0 \to \Xi^0 \ell^+ \ell^-)$ < 9.9 (6.5) × 10⁻⁵ for electron (muon) mode.
- This analysis is to be submitted to Phys. Rev. D.

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+$ $\to \Sigma_c^{0,++}$ $\overline{\pi}$

■ Motivation **[PRD 107, 032008 \(2023\)](https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.032008)**

- $\Lambda_c(2625)^+$ (J^P = 3/2⁻) is the excited state of Λ_c^+ . It dominantly decays to $\Lambda_c^+\pi^+\pi^-$ via P-wave decay. The D-wave decay $\Lambda_c(2625)^+\to\Sigma_c^{0,++}\pi$ is also allowed, but its contribution is known to be small.
- The limited decay phase space of $\Lambda_c(2625)^+\to \Lambda_c^+\pi^+\pi^-$ makes it difficult to extract the $\Sigma_c^{0,++}$ yields by fitting the $M(\Lambda_c^+\pi^\pm)$, due to the presence of reflection peaks formed by the combination of the Λ_c^+ and the other final-state pion. This can be solved by using a full Dalitz fit [PRD 98, 114007 (2018)].
- The mass of the $\Lambda_c(2625)^+$, relative to the Λ_c^+ mass, is already relatively well known [PRD 84,012003 (2011)], but the large Belle data sample allows for a more precise measurement.

 \bullet No intrinsic width of the $\Lambda_c(2625)^+$ has yet been measured, and the current upper limit Γ < 0.97 MeV/ $c²$ at 90% confidence level is based on the CDF measurement in 2011 [PRD 84,012003 (2011)].

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+$ $\to \Sigma_c^{0,++}$ π

■ Measurements of mass and width

Reconstruction mode: $\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-, \Lambda_c^+ \to pK^-\pi^+$

Fig: $M(\Lambda_c^+\pi^+\pi^-)$ distribution from data and corresponding fit result.

\Box $M[\Lambda_c(2625)^+] - M(\Lambda_c^+) = 341.518 \pm 0.006 \pm 0.049$ MeV/ c^2

- \triangleright consistent with the world average value 341.65 \pm 0.13 MeV/ c^2
- \triangleright has approximately half the uncertainty

$\Box \Gamma[\Lambda_c(2625)^+] < 0.52$ MeV

- \triangleright a factor of 2 more stringent than the previous limit Γ < 0.97 MeV
- \triangleright An improved limit on the width of the $\Lambda_c(2625)^+$ will help to constrain various theoretical predictions.

full Belle datasets

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+$ $\to \Sigma_c^{0,++}$ π

■ **Measurements of branching fractions**

Full Dalitz plot fitted with AmpTools is performed [PRD 98, 114007 (2018)].

Dalitz plot fit result plotted as projections. Solid lines show the overall fitted distribution and its individual components as indicated in the legend.

Mass and width of $\Lambda_c(2625)^+$ and BR of $\Lambda_c(2625)^+$ $\to \Sigma_c^{0,++}$ $\overline{\pi}$

■ Measurements of branching fractions

The branching ratio of $\Lambda_c(2625)^+\to\Sigma_c^{0,++}\pi$ relative to the reference mode $\Lambda_c(2625)^+\to\Lambda_c^+\pi^+\pi^-$ is calculated by:

$$
\frac{B(\Lambda_c(2625)^+ \to \Sigma_c^{0,++}\pi)}{B(\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-)} = \frac{y_{sig}(\Sigma_c^{0,++}) - y_{bkg}(\Sigma_c^{0,++})}{y_{sig}(\Lambda_c(2625)^+)} \quad \text{(y is efficiency-corrected yield)}
$$

 $y_{bkg}(\Sigma_c^{0,++})$ is obtained from sidebands of $\mathrm{M}(\Lambda_c^+\pi^+\pi^-)$. We obtain:

$$
\frac{B(\Lambda_c(2625)^+ \to \Sigma_c^0 \pi)}{B(\Lambda_c(2625)^+ \to \Lambda_c^+ \pi^+ \pi^-)} = (5.19 \pm 0.23 \pm 0.40)\%
$$

$$
\frac{B(\Lambda_c(2625)^+ \to \Sigma_c^{++}\pi)}{B(\Lambda_c(2625)^+ \to \Lambda_c^+\pi^+\pi^-)} = (5.13 \pm 0.26 \pm 0.32)\%
$$

- \Box The measured branching fraction ratios agree with PDG values and are the most precise to date.
- \Box Our measurements align with the prediction that assuming $\Lambda_c(2625)^+$ is a λ mode excitation [PRD 98, 114007 (2018)].

$BR(B^+ \to K^+ \nu \overline{\nu})$ in the Standard Model

The decay $B^+ \to K^+ \nu \bar{\nu}$ occurs through a flavor-changing neutral current

$$
\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}
$$

Phys. Rev. D 107, 1324 014511 (2023), arXiv:2207.13371 [hep-ph], Phys. Rev. D 107, 119903 (2023)

• **Rare:** $b \rightarrow s\nu\overline{\nu}$ transition suppressed by the GIM mechanism

• Precise SM prediction: it does not suffer from hadronic uncertainties (beyond the form factors)

$BR(B^+ \to K^+ \nu \overline{\nu})$ beyond the Standard Model

 $\mathcal{B}(B^+ \to K^+ \nu \bar{\nu})$ can be significantly modified in models that predict non-SM particles, such as leptoquarks:

Indirect way to investigate the presence of multi-TeV particles

SM extensions predict $B^+ \to K^+ X_{inv}$, where X_{inv} is an undetectable particle

 X_{inv} could be a feebly interacting, long-lived, particle that escapes the detector (e.g., dark sector mediator) or a dark matter candidate.

Can be a scalar as in models with dark sector mixing with the SM Higgs PhysRevD.101.095006 or a pseudo-scalar such as an axion or axion-like-particle PhysRevD.102.015023, JHEP03(2015)171

Experimental status

No evidence for a signal observed to date Current best experimental upper limit: 1.6×10^{-5} at 90 % CL PhysRevD.87.112005 [BaBar]

The first analysis on $B^+ \to K^+ \nu \bar{\nu}$ performed by Belle II used a limited dataset: $L = 63$ fb-1

- Innovative approach
- · no significant signal was observed
- the observed upper limit was 4.1×10^{-5} at 90% CL
- $BR(B^+ \rightarrow K^+ \nu \bar{\nu}) = [1.9^{+1.3}_{-1.3} \text{ (stat)}^{+0.8}_{-0.7} \text{ (syst)}] \times 10^{-5}$

Phys. Rev. Lett. 127, 181802

Good sensitivity with a small dataset

B meson tagging

Hadronic B-tagging

kinematic constraints help reconstruct signal with neutrinos in final state

Auxiliary analysis Conventional approach for B factories

 ϵ (had-tag FEI) ~ $\mathcal{O}(0.1\% - 0.5\%)$

Inclusive B-tagging

Only reconstruct the signal B final state, no request on the other B

Less precise reconstruction of final states with neutrinos, but higher efficiency

In a nutshell

Challenges:

- Small signal rates, large background
- Two neutrinos \Rightarrow Under-constrained kinematics
- Continuous spectrum for the signal kaon, no good variable to fit

1) Reconstruction and basic selection

- Kaon identification
- ITA: reconstruct rest of the event

• HTA: reconstruct partner B in hadronic final $\bullet \epsilon_{had-tag} \sim 0.7\,\%$ $\bullet \epsilon_{inc} \sim 40\,\%$ states and rest of the event

2) Definition of the signal region

Cut on the output of MVA classifiers optimized and trained using simulated data

$$
\bullet \epsilon_{had-tag} \sim 0.4\,\%
$$

$$
\bullet \epsilon_{inc} \sim 8\,\%
$$

3) Validation

Check signal efficiency and background modeling with data

4) Signal extraction

Binned profile-likelihood fit to:

- ITA: classifier outputs and dineutrino mass
- · HTA: classifier output

ITA Result

ITA Result

$$
\mu = 5.6 \pm 1.1 \text{(stat)}^{+1.0}_{-0.9} \text{(syst)}
$$

\n
$$
\mu = BR/BR_{SM} \qquad BR_{SM} = 4.97 \times 10^{-6}
$$

\n
$$
BR(B^+ \to K^+ \nu \bar{\nu}) = [2.8 \pm 0.5 \text{(stat)} \pm 0.5 \text{(sys)}] \times 10^{-5}
$$

Significance of the excess with respect to the background-only 3.6σ hypothesis ($\mu = 0$):

Significance of the excess with respect to the SM signal hypothesis ($\mu = 1$): 3.0 σ

First evidence of the $B^+ \to K^+ \nu \bar{\nu}$ process

HTA Result

$$
\mu = 2.2 \pm 2.3 \text{(stat)}^{+1.6}_{-0.7} \text{(syst)}
$$

$$
\mu = BR/BR_{SM}
$$

$$
BR(B^+ \to K^+ \nu \overline{\nu}) = [1.1^{+0.9}_{-0.8} \text{(stat)}^{+0.8}_{-0.5} \text{(sys)}] \times 10^{-5}
$$

Significance with respect to the background-only hypothesis ($\mu = 0$): 1.1 σ with SM signal ($\mu = 1$): 0.6 σ

consistent with ITA:

difference in μ for ITA and HTA within 1.2 standard deviations

Post-fit distributions for signal and background

Combination

Consistency between ITA and HTA

Events from the HTA signal region represent only 2% of the signal region ITA

- Correlations among common systematic uncertainties included
- Common data events excluded from ITA sample

 $\mu = 4.7 \pm 1.0$ (stat) ± 0.9 (syst) $BR(B^+ \to K^+ \nu \overline{\nu}) = [2.4 \pm 0.5(stat)_{-0.4}^{+0.5}(sys)] \times 10^{-5}$

ITA-HTA combination improves the ITA-only precision by 10%

 3.6σ Significance of the excess with respect to the background-only hypothesis ($\mu = 0$)

First evidence of the $B^+ \rightarrow K^+ \nu \bar{\nu}$ process

2.8 σ with respect to the SM signal ($\mu = 1$)

New experimental state of the art

ITA result has some tension with previous semi-leptonic tag measurements a 2.4 σ tension with BaBar a 1.9 σ tension with Belle

HTA result in agreement with all the previous measurements

> Overall compatibility is good: $\chi^2 / ndf = 4.3/\tilde{4}$

(*) Belle reports upper limits only; branching fractions are estimated using published number of events and efficiency

<u>Belle II run I (2019-2022)</u>

 \Rightarrow what about run II?

<u>What are our goals for 2024?</u>

(please a clear and sound message)

(while doing good physics and working for the upgrade)

run 1 (\rightarrow June 2022): integrated luminosity \sim 0.43 ab⁻¹, 4-5 \times 10³⁴/cm²/s PXD complete (2 layers) to be installed during LS1 (2022-2023) $(+$ beampipe + TOP PMTs) run 2 (\rightarrow 2027): integrated luminosity 5-10 ab⁻¹, 2×10^{35} /cm²/s 2028: collider upgrade $(QCS+RF) \rightarrow$ installation upgraded detector run 3 (\rightarrow 2035): 50 ab⁻¹

- Some new results from scan data around 10.75 GeV from Belle II come out
- We have some new results on charmed baryons from Belle
- First evidence for the $B^+ \to K^+ \nu \bar{\nu}$ decay was obtained at Belle II
- Many new results at Belle II are promising

Thanks for your attention!

Backup slides

Comparison of σ b_b and σ_{BB} + σ_B_{*} + σ_B*_B*

- Agreement at low energy
- Departure at high energy is due to $\overline{\mathrm{B}}^{(*)}_{\mathrm{S}}\overline{\mathrm{B}}^{(0)}_{\mathrm{S}}$ $_{\rm s}^{(*)}$, multi-body ${\rm B^{(*)}\overline{B}^{(*)}\pi(\pi)}$, and bottomonia $_{55}$

Invariant mass distribution of $\pi^+\pi^-\pi^0$

 $9.2 < M_{rec}(\pi^+\pi^-\pi^0) < 9.6$ GeV/c² $(\eta_b(1S)$ included)

9.78 < $M_{rec}(\pi^+\pi^-\pi^0)$ < 9.95 GeV/c² $(\chi_{bI}(1P)$ included)

- A double-sided Crystal Ball + a Gaussian for ω signal
- 2nd or 3rd order Chebyshev polynomials for backgrounds
- The purities of ω-meson signals are 12.9% for $\eta_{b}(1S)$ and 5.3% for $\chi_{bI}(1P)$

Bottomonium(-like) prospects at Belle II

Four ways to access bottomonia:

- Direct production from e^+e^- : J^{PC} = 1⁻⁻: $Y(nS)$
- ISR production: $J^{PC} = 1^{--}$: $Y(nS)$
- Hadronic transitions from $Y(nS)$ through η, $\pi\pi$, ...

 $J^{PC} = 0^{-+}$, 1⁻⁻, 1⁺⁻ ... : Y(nS), η_b(nS), h_b(nS), ...

• Radiative transitions from $Y(nS)$

 $J^{PC} = 0^{-+}$, 0^{++} , 1^{++} , 2^{++} : η_b(nS), χ_b(nP)

Bottomonium(-like) prospects at Belle II

Run at Y(6S) and Y(5S) and high energy scan:

- Search for new missing bottomonia η_b(3S), h_b(3P), Y(D), exotic states Y_b, Z_b, etc
- Improve precision of already known processes and states, e.g., Z_b
- Measure the effect of the coupled channel contribution
- Study $B^{(*)}\overline{B}^{(**)}$ and $B_s^{(*)}B_s^{(**)}$ threshold regions (challenging for Super-KEKB)

Run at Υ(3S) and Υ(2S):

- Search for missing $\pi\pi/\eta$ transitions in inclusive decays to constrain further models
- Search for new physics: LFV, LFU, light Higgs, …

ITA Post fit distributions

Examples:

Signal region $\mu(BDT_2) > 0.92$

High sensitivity bins of the signal region

 $\mu(BDT_2) > 0.98$

HTA Post fit distributions

Examples:

