

第八届手征有效场论研讨会●开封

HIAF上的不稳定核物理研究

王世陶 中国科学院近代物理研究所 2023.10

"十二五"期间国家布局建设16项重大科技基础设施

- (一) 海底科学观测网
- (二) 高能同步辐射光源验证装置
- (三)加速器驱动嬗变研究装置
- (四) 综合极端条件实验装置
- (五)强流重离子加速器装置
- (六)高效低碳燃气轮机试验装置(七)高海拔宇宙线观测站
- (八)未来网络试验设施

- (九) 空间环境地面模拟装置
- (十)转化医学研究设施
- (十一) 中国南极天文台
- (十二) 精密重力测量研究设施
- (十三) 大型低速风洞
- (十四) 上海光源线站工程
- (十五) 模式动物表型与遗传研究设施
- (十六) 地球系统数值模拟器

强流重离子加速器装置

High Intensity Heavy-ion Accelerator Facility (HIAF)

HIAF主要任务:研究核物理前沿重大科学问题

HIAF简介

IMP

原子核存在的极限和奇异结构、核力的本质?
在自然界中化学元素特别是重元素是如何产生的?
存在多少种化学元素、是否存在超重核稳定岛?
在极高密度温度下核物质新形态及核物质相结构?
……

中国核物理发展规划 中国科学院:国家科学思想库 中国学科发展战略系列丛书 核物理与等离子体物理 -学科前沿及发展战略 核物理卷,2017

重大核

物理问题

欧洲核物理发展规划

European Science Foundation The Nuclear Physics European Collaboration Committee Long Range Plan 2017 Perspectives in Nuclear Physics

美国核物理发展规划

Nuclear Science Advisory Committee by DOE and NSF Reaching for the Horizon: The 2015 Long Range Plan for Nuclear Science

核物理根本目标: 认识核内有效相互作用(核力)

HIAF简介

IMP

目前: 唯像模型 + 初步ab initio 理论 **Ultimate Nuclear Model**: 描述所有核结构和反应

核力包括:

- 自旋轨道耦合项
- 张量力成分
- 三体力成分
- 同位旋相关项

Woods-Saxon 势: $V(r) = -V_0 (1 + e^{\frac{r-R}{a}})^{-1}$ 普适的严格解析表示: V(r)? 开拓核素版图 $-\frac{\hbar^2}{2\mu}\nabla^2 + V(\mathbf{r}) \psi(\mathbf{r}) = E\psi(\mathbf{r})$

奇特核结构和性质

核科学技术是大国必争的战略高地

IMP

HIAF简介

核物理基础研究为核技术广泛应用提供理论、技术和人才支撑

2010	May, 2011	December, 2015	April, 2017	2018
			<u> </u>	
提交 HIAF	HIAF进入"十二五"	建设地点最终确定, HIAF	HIAF项目可	12月23号, HIAF
项目建议书	候选项目名单(共16项)	项目得到政府批准立项	研报告获批	建设正式启动

主要科学目标(发改委建议书):

扩展核素版图,研究奇特核结构和性质
 合成超重新元素,探索超重核稳定岛

理解宇宙中重元素起源
重离子束重大应用

Funding agency: The National Development and Reform Commission (NDRC) 16.7+10 $(\overline{Z}\overline{\pi})$

IMP.

HIAF实验测量装置布局

IMP

熔合反应: 新元素和缺中子新核素合成、衰变谱学

▶ 新谱仪传输效率: ⁴⁰Ar+¹⁶⁹Tm ~ 58%; ⁴⁰Ar+¹⁷⁵Lu ~ 47%;
 ▶ 利用新谱仪合成了一批新核素

充气反冲核分离器 + 各种实验测量装置

多核子转移反应:探索超重核稳定岛

丰中子核分离器 + 实验测量系统

在丰中子核分离器后,得到质量数(电荷数)鉴别的超重核素

> 衰变测量装置,研究丰中子超重核衰变性质
> 多反射飞行时间质谱仪,测量丰中子超重核质量
> 共线激光谱仪,研究超重原子结构&测量核电荷半径
> 气相热色谱仪,研究超重元素化学性质

已知特征X射线能量最重元素: E102; 已知第一电离势最重元素: E103 形成在国际上独具特色、极具竞争力的丰中子超重核素合成、超重核衰变 性质研究、超重元素化学性质研究、超重原子结构研究综合实验平台

低能实验终端:研究目标

新元素合成研究

IMP

- > 目标: 冲击合成119,120号元素
 - ・ 验证115号元素: ⁴⁸Ca + ²⁴³Am
 - 产生119号元素: ⁵⁴Cr + ²⁴³Am (⁵⁰Ti+²⁴⁹Bk)
 - 产生120号元素: ⁵⁵Mn + ²⁴³Am (⁵⁰Ti+²⁴⁹Cf)
- > 可行性评估:

113 当时实验能力极限(日本):
 末流强度: ~1pμA; σ~19fb
 结果: 575 天, 3个事件

σ~8fb, 束流强度5~10pμA 标准实验设置: 事件/100~200天, 可行!

核心技术挑战(加速器流强):
 国际现状:最高流强~3pμA
 目标: 束流强度 5~10 pμA!

低能实验终端:研究目标

113号元素的化学性质研究 确定了108号以下元素在周期表中的位置

112号元素化学性质可能类汞

- ²⁴³Am(⁴⁸Ca, 3n)²⁸⁸Mc (115号元素)
- ${}^{288}\text{Mc} \rightarrow {}^{284}\text{Nh} + \alpha$

IMP

• ²⁸⁴Nh 有较长半衰期 T_{1/2} = 0.91s

東流

核心技术挑战:

IMP

- 高效分离丰中子超重核
- 超重核电荷数和质量数直接测量技术 •

多反射飞行时间质谱仪

冷却聚束器

He flow

Ion beam

†F

科学目标: 先进核能材料抗辐照性能评价

现SFC-T1终望

- 梯度减能
- 大范围控温
- 在线应力/胚

				数据集	成获取系统	大下 成数: 微观度关验状、星像体	变场/温度场 字图像采集
SFC-T1终端: ^弟 度减能 大范围控温 E线应力/应变测试	可调限束光栏(水冷) 感应式流强探测器 二维束流轮廓监测仪 (2D-BPM)	梯度减能器	大面积分区控温 样品台 真空系统 (TMP, 10 ⁻⁵ Pa)	^熙 ፼ ^王 「 福照	压 (100 Pa) 蠕变系统	¥	
强流离子束辐照终端 : 2023.06 完成设计	東流监测	则,梯度 2023.0 完成语	<mark>减能,大</mark> ī 7-2023.12 ^{鄂件加工}	面积/多	样品控温, 2024.01-202 安装、调试、	,在线蠕变 24.12 验收	ᢄ测试

慢引出准连续高能离子束流,束流持续时间 3s

Typical Beam Parameters From BRing@HIAF

lons	Energy(GeV/u)	Intensity (ppp)
Р	9.3	2.0×10 ¹²
¹⁸ O ⁶⁺	2.6	6.0×10 ¹¹
⁷⁸ Kr ¹⁹⁺	1.7	3.0×10 ¹¹
²⁰⁹ Bi ³¹⁺	0.85	1.2×10 ¹¹
²³⁸ U ³⁴⁺	0.8	1.0×10 ¹¹

____Calorimeter

ToF Detectors

产生 Λ -超核和 $\Lambda\Lambda$ -超核

Ξ-超子产生阈: 3.747 A GeV; Ξ-p ->ΛΛ

Expected reconstructed rate

- ²⁰Ne + ¹²C at 4.25 A GeV
- Beam intensity: 10⁷ /s

	Single-∧ hypernuclei	Double-∧ hypernuclei
per day	8 X 10 ⁵	9 X 101
per week	6 X 10 ⁶	6 X 10 ²
per month	2 X 10 ⁷	3 X 10 ³

国际合作,申请经费

Open New Domain: Hypernuclei with Double Strangeness

Production of $\Lambda\Lambda$ hypernuclei ■ d + Ξ⁻ -> n∆∧ $+ \Xi^- - > nn \Lambda \Lambda$ ■ ³He + Ξ^- -> ⁴ , , H • ${}^{4}\text{He} + \Xi^{-} - {}^{5}_{\Lambda \Lambda}\text{H}$ • $^{6}Li + \Xi^{-} - ^{7}AAHe$ ⁷Li + Ξ⁻ -> ⁸_{ΛΛ}He ■ ⁹Be + Ξ⁻ -> ¹⁰_{A A}Li ■ ¹⁰Be + Ξ⁻ -> ¹¹_{∧∧}Li ■ ${}^{10}B$ + Ξ^- -> ${}^{11}_{\Lambda\Lambda}Be$ ■ ¹¹**B** + Ξ⁻ -> ¹²_{∧∧}**Be** L ...

Decay of $\Lambda\Lambda$ hypernuclei **n** $\Lambda\Lambda$ -> ³He + π^- + π^-

- **I** nn $\Lambda\Lambda$ -> ⁴He + π^- + π^-
- ${}^{4}_{\Lambda\Lambda}H \rightarrow p + {}^{3}He + \pi^{-} + \pi^{-}$
- **5** $_{\Lambda\Lambda}H \rightarrow p + {}^{4}He + \pi^{-} + \pi^{-}$
- $\blacksquare 7_{\Lambda\Lambda} He > 7Be + \pi^- + \pi^-$
- ${}^{8}_{\Lambda\Lambda}$ He -> 4 He + 4 He + π^{-} + π^{-}
- **10** $^{10}A\Lambda}Li -> ^{10}B + \pi^- + \pi^-$
- $\blacksquare \ ^{11}\Lambda\Lambda Li \rightarrow {}^{11}B + \pi^- + \pi^-$
- $= {}^{11}_{\Lambda\Lambda} Be \rightarrow {}^{11}C + \pi^- + \pi^-$
- **12** $^{12}AABe ^{12}C + \pi^{-} + \pi^{-}$

鉴别:不变质量谱(invariant mass method) **寿命测量:**衰变定点(decay vertex)分布

高重子密度区核物质相结构

≻目标:

- 高重子密度区核物质相结构
- 寻找QCD相变临界点

≻研究内容:

- 建造低温高密核物质测量谱仪
- 开展能量扫描测量

研究在高重子密度区核物质相结构与状态方程

在HIAF能区实现相关物理量的精确测量

🖗 高能实验终端:综合辐照效应终端

综

合

辐

照

效 应

终

端

评估3D堆叠SiP器件、倒封装器件、系统级组件、整机等单粒子效应 整机和小卫星空间运行环境的综合、复杂辐射场模拟

HFRS: High-energy FRagment Separator

高能放射性束流线HFRS

新一代In-Flight型放射性束装置

高能放射性束流线HFRS

IMP

装置	长度 (m)	角接收度 (mrad)	动量接收度 (%)	分辩本领	最大磁刚度 (Tm)
HFRS	191.8	\pm 30 (X); \pm 15 (Y)	±2.0	850/1100	25
SuperFRS	182.2	\pm 40 (X); \pm 20 (Y)	±2.5	750/1500	20
BigRIPS	78.2	\pm 40 (X); \pm 50 (Y)	±3	1260/3420	9.5
ARIS	86.8	\pm 40 (X); \pm 40 (Y)	±5	1720/3000	8

高能放射性束流线HFRS: 工作模式

IMP

🖗 高能放射性束流线HFRS:工作模式

标准模式下HFRS粒子鉴别能力

高能放射性束流线HFRS: 工作模式

IMP

谱仪模式下HFRS粒子鉴别能力

高能放射性束流线HFRS:研究目标

HFRS: High-energy FRagment Separator

➢ HFRS上可开展的课题种类多 ➢ 建立多个国内、国际合作组

物理研究课题 @HFRS

- 1. 产生并鉴别²⁰⁸Pb东南区新核素(²⁰⁸Pb和²³⁸U弹核碎裂反应)
- 2. 探索至Ni同位素中子滴线位置(Kr和Xe弹核碎裂反应)
- 3. 利用飞行中²³⁸U核裂变产生并鉴别新核素
- 4. 利用两步反应产生并鉴别新核素
- 5. 产生并鉴别丰中子新超核
- 6. 研究核子之间的张量力效应
- 7. 非束缚原子核飞行中粒子发射
- 8. 核物质分布半径测量 (Interaction cross sections)
- 9. 原子核电荷分布半径测量 (Charge changing cross sections)
- 10. 利用电荷交换反应测量快中子俘获路径上核 β衰变强度
- 11. 原子核中、特别是不稳定原子核中核子激发态性质
- 12. 寻找丰中子原子核巨共振新模式
- 13. 奇特核弹性散射和转移反应研究

14.

高能放射性束流线HFRS: 实验区域

IMP.

🖗 高能放射性束流线HFRS:基于外靶终端的实验

外靶终端区域拥有充足空间(面积~400 m²), 将来可建造多种实验装置、开展多种类型的物理实验

大接收度谱仪装置 (高能放射性束反应实验)

束流慢化+低能实验装置 (低能放射性束反应实验)

束流阻停+衰变及离子操纵装置 (衰变、离子操纵实验)

高能放射性束流线HFRS:基于外靶终端的实验

IMP

🖗 高能放射性束流线HFRS:基于束线的实验

基于HFRS的碎片分离束线功能,结合束线探测器可开展的实验研究:

- RIB production mechanism (fragmentation cross section / two-step reaction / ...)
- Discovery of new isotope
- > Mass measurement of extremely short-lived nuclei
- ▶

高能放射性束流线HFRS:基于零度谱仪的实验

利用HFRS的PFO-MF4部分作为碎片分离束线及MF4-MF6作为零度谱仪, 结合新建造的探测装置,可开展多种类型的物理实验:

- >....
- \succ Interaction cross section \rightarrow nuclear radii and matter distribution, halo and skin structures
- \rightarrow Knockout/Quasifree knockout \rightarrow single-particle structures, unbound states/nuclei, clusters
- \succ Charge change/exchange \rightarrow Gamow-Teller strength, spin-dipole resonance, neutron skins

高能放射性束流线HFRS:基于零度谱仪的实验

New magic numbers
 Shell evolution

Shape coexistence

os .

•••••

① MF4-MF6谱仪: 类弹产物测量

- Interaction/Fragmentation cross section
- Knockout (inclusive cross section + momentum distr.)
- > Charge exchange

② Csl阵列:在束γ谱测量

> Spectroscopy of nuclei at limits → E(2+), E(4+), ...
 > Knockout (exclusive cross section + momentum distr.)
 > Inelastic/Coulomb excitation → B(E2)

•••••

③ Csl阵列+DSSD阵列:轻带电粒子∆E,E,径迹

- >Quasi-free scattering
- ≻Missing mass → unbound states
- >Reaction mechanism of knockout/quasi-free/...

HIAF的特点和优势:

- 最高磁刚度Bρ=25Tm,产生高能放射性束流
 高分离本领,能够产生从氢到铀的全裸离子
- ▶ 不同束流光学设置,提供多种工作模式

IMP

- 原子核中核子激发态性质
 合成丰中子新超核
 丰中子核的新巨共振模式
- > 介子-原子核束缚系统谱学

高能放射性束流线HFRS: 束线实验设备研制进展

IMP

初级靶、降能器、束诊探测器、电子学等研制						
	实验设备名称	技术和样机研制进展				
(1)	石墨靶样机研制	完成设计、制造、以及传和热性能测试				
(2)	降能器、狭缝样机研制	初步完成设计,制造了样机,正在进行测试				
(3)	飞行时间探测器样机研制	•(基本版)完成塑闪样机设计、加工、测试 •(升级版)完成小面积金刚石探测器研制,正在研制大面积探测器				
(4)	束线位置探测器样机研制	•(基本版)PPAC、MWDC样机,完成了研制 •(升级版)GEM-TPC样机,确定了研制方案,正在进行模拟和设计				
(5)	束线能损探测器样机研制	•(基本版)MUSIC探测器,利用已有样机,验证了读出方案 •(升级版)完成氙闪烁光探测器设计和部件加工,正在进行测试、组装				
(6)	电子学及数据获取系统	 研制了基于NINO、PADI芯片的金刚石读出电子学 完成GEM-TPC电子学及获取512路硬件研制,正在与获取系统联测 完成了利用外部时钟(40MHz)同步两个VME机箱测试 				

ΔE测量: MUSIC或氙闪烁光探测器; ToF测量: 金刚石探测器; Bρ测量: GEM-TPC

快引出: Repetition rate 3 Hz; 50~200ns/pulse length **HFRS:** 产生、分离目标核素并将其注入储存环谱仪

实验测量装置:

>等时性质谱仪(IMS)>电子离子复合共振谱仪>Schottky谱仪(SMS)>核反应装置

新技术: ✓Bp - defined IMS IMI

高精度环形谱仪:新型等时性质谱术

IMP

▶首次测量质量: ⁶²Ge, ⁶⁴As, ⁶⁶Se, 和⁷⁰Kr ▶提高质量精度: ⁵⁸Zn, ⁶¹Ga, ⁶³Ge, ⁶⁵As, ⁶⁷Se, ⁷¹Kr和⁷⁵Sr

X射线暴中核过程;约束中子星性质 Nature Physics

Phys. Rev. Lett.

储存环物理

实验测量:

- 高精度原子核质量测量
- 原子核寿命测量
- 奇特衰变模式

物理目标:

- ▶ 确定质子、中子滴线位置 ▶ 研究幻教院化 # 现东幻教
- > 研究幻数演化、发现新幻数
- >寻找高电荷态离子奇异衰变
- > 模拟天体环境中核过程

本世纪13个物理难题之一: 宇宙中从铁到铀重元素来源?

Core collapse supernovae

Merging of two neutron stars

比较天体模型计算的元素丰度与测量丰度,研究r过程发生的天体环境和场所

HIAF未来规划

IMP

惠州核科学研究中心

(China advanced NUclear physics research Facility, CNUF)

HIAF建设进展

2019	2020	2021	2022		2023	2024	2	025
Civil construction								
		Electric p network	Electric power, cooling water, compressed air, network, cryogenic, supporting system, etc.					
ECR design & fabrication SECR i and com			installa missic	tion ning				Dev
	Linac desig	n & fabricatio	n	iL	inac installatio commissioni	on and ng		One
Prototypes of PS, RF cavity, chamber, magnets, etc.			fabri	cation	BRing installation & commissioning			exp.
					HFRS & SI	Ring installation	on &	
					com	missioning		
					Terminals	installation		

- ▶ 2022年底SECR实现供束;
- ▶ 2024年底iLinac开始供束;
- ▶ 2025年4月Bring实现束流引出。

2025年底具备开展物理实验的条件

中国科学院近代物理研究所惠州研究部

- ▶国家重大科技基础设施--强流重离子加速器(HIAF)将 为我国核物理基础和应用研究提供先进的束流条件。
- ➢HIAF的建设工作已在惠州全面展开,目前项目进展顺利, 预期将于2025年出束。
- ➢HIAF上的物理研究工作需要更多国内和国际合作者的加入,希望能在研究目标确立和相关探测设备研制等方面 发挥更关键的作用。

