Discovery and Discovery Potential of Doubly Heavy Hadrons 秦溱 华中科技大学

*Phys.Lett.B*782(2018)412, Ali, Parkhomenko, **QQ**, Wang *Phys.Lett.B*785(2018)605, Ali, **QQ**, Wang *Chin.Phys.C*45(2021)103106, **QQ**,Shen,Yu *Phys.Rev.D*104(2021)114009, Jin,Li,Liu,**QQ**,Si,Yu *Phys.Rev.D*105(2022)L031902, **QQ**,Shi,Wang,Yang,Yu,Zhu

第八届手征有效场论研讨会 2023年10月27-31日@河南大学(开封)

• Why do we need doubly heavy hadrons?

• Discovery of T_{cc}

• Discovery potential of Ξ_{bc}

Contents

The quark model

- Old myth
- New life

Murry Gell-Mann 1969 Nobel Prize for physics

Three new milestones

Observation of tetraquarks \bullet

[BESIII, *Phys.Rev.Lett.* 110 (2013) 252001]

Observation of pentaguarks lacksquare

[LHCb, *Phys.Rev.Lett.* 115 (2015) 072001]

Observation of a double-charm baryon Ξ_{cc}^{++} lacksquare[LHCb, *Phys.Rev.Lett.* 119 (2017) 112001]

The *Physics* 2013 "Highlights of the Year" (rank 1st)

The *Physics World* 2015 "top-10 breakthroughs"

国家科技部"2017年度中国科学十大进展"

"Periodic table of the hadrons"

Image: browner browne browner browner browne browner browner browner browner browner br	Periodic Table of the Elements											2 Helium 4.003						
Nome Nome Since Production Since Production Since	Lithium	Beryllium											Boron	Carbon	Nitrogen		Fluorine	Neon
K BURNERC C Guident BURNERS C C 	Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Cl	Argon
Rb Rublidium B3-debY Free Table B3-debY Free Table TableZ Free Table TableNb Table Table Table Table TableNb Table Table Table Table TableNb Table Table Table Table TableNb Table Table Table Table TableNb Table Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table TableNb Table Table Table TableNb Table Table Table Table Table TableNb Table 	K Potassium	Calcium	Sc Scandium	Ti Titanium	V Vanadium	Cr	Manganese	Fe	Co	Ni	Cu	Zn	Gallium	Germanium	As Arsenic	Selenium	Br	Krypton
CS Barium 132.905Ba Barium 137.328Hf Hafnium 178.49Ta Ta Antalum 180.948W R Ta antalum 180.948Re Re Nugsten 	Rb	Strontium	Yttrium	Zr	Niobium	Mo	Tc Technetium	Ru	Rhodium	Pd Palladium	Ag	Cd Cadmium	In	Sn	Sb Antimony	Tellurium	lodine	Xe
Francum 23.020Ra Radium 226.025Rf Rutherfordium [261]Db Db Db Db Db [262]Sg Sg Seaborgium 	Cs	Barium	57-71	Hf Hafnium	Ta Tantalum	W Tungsten	Re	Osmium	Iridium	Pt	Au	Hg	Tl	Pb Lead	Bi	Polonium	At	Radon
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71	Francium	Ra	89-103	Rf Rutherfordium	Db Dubnium	Seaborgium	Bh	HS Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nh	FI			Ts Tennessine	Oganesson
La La Lathaum 138.905Ce Cerium 140.116Pr Presedymium 140.908Nd Nd No 144.913Pm N Sm 15.36Sm Sm Smarium 15.366Sm Sm Sm Sm Smarium 15.964Gd Sd Sm Smarium 	etium 4.967																	

$\pi, K,$	D	В	η_c	B _c	η_b			
p, n, 	Λ_c	Λ_b				Ecc	Ξ_{bc}	Ξ_{bb}
	X (2900)		Z_c			T _{cc}	T_{bc}	T _{bb}
			(P_c)					

 Z_c, P_c : a new period

 Ξ_{cc} , X(6900): a new main group

Beyond stamp collecting

hadrons

also electroweak dynamics

e.g., doubly heavy baryons have a unique structure, resembling a 'double star' with a 'planet' attached

analogous to a heavy meson, but also different: bosonic, sizable heavy element

e.g., the doubly heavy tetraquarks help us probe the nature of exotic hadronic states, cusps or true resonances

More is better

• Because of color confinement, properties of quarks are studied via

New types of hadrons provide new visual angles into QCD and

$\pi, K,$	D	В	η_c	B_c	η_b				
p, n, 	Λ_c	Λ_b				Ξ_{cc}	Ξ_{bc}	Ξ_{bb}	
	X (2900)		Z_c					T _{bb}	×
			P_{c}						

 Ξ_{bc} : [**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716] "Inclusive approach for beauty-charmed baryon Ξ_{bc} search"

Who is to be shot next?

Two targets after the Ξ_{cc}^{++} discovery.

(6900)

T_{cc}: [**QQ**,Shen,Yu,2008.08026] "Discovery potential of double-charm tetraquarks"

One year later $- T_{cc}$ discovery was reported by LHCb on 28 July 2021.

[LHCb,2109.01038;2109.01056]

Production Mechanism

It was proposed for double-bottom hadron production

- Assuming T_{cc} a real tetraquark, the same mechanism applies
- <u>Stay close enough?</u> One parameter —

- 1. Two produced heavy quarks stay close enough to form a heavy diquark
- 2. The heavy diquark further fragments into doubly heavy hadrons

 $\Delta M \equiv M_{cc} - 2m_c \leq (2.0^{+0.5}_{-0.4}) ~\rm{GeV}$

Determined by matching the B_c production rate to $bb\bar{c}c$

[Ali,Parkhomenko,**QQ**,Wang,1805.02535;Ali,**QQ**,Wang,1806.09288]

Production of double-charm hadrons

With partonic simulation by MadGraph & Pythia, we obtain

• The cross section for all double-charm hadrons

 $\sigma(pp \to H_{cc} + X) = (310^{+170}_{-70})$ nb;

- For double-charm <u>baryons</u>, e.g. $\sigma(\Xi_{cc}^{++}) = (103^{+56}_{-22}) \text{ nb}$
- For double-charm tetraquarks, e.g.

$$\sigma(T_{cc}^+) = (24_{-7}^{+14}) \text{ nb}$$

The cuts are $4 < p_T < 15$ GeV, $2 < \eta < 4.5$ @ 13 TeV LHCb

[**QQ**,Shen,Yu,2008.08026]

Comparison with theory

vs 62 nb (NRQCD)

[Chang,Qiao,Wang,Wu,0601032]

Comparison with experiment

vs [30, 130] nb (LHCb with theory inputs)

 $\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)$ $= (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$ $\sigma(\Lambda_c^+)$

[LHCb,1910.11316]

Propose the golden channel $T_{cc}^+ \rightarrow D^0 D^{*+} \rightarrow D^0 D^0 \pi^+$

- Big branching ratio
- Big detection efficiency (all charged particles)

Compared with
$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$

Production
$$\sigma(\Xi_{cc}^{++}) = (103^{+56}_{-22}) \text{ nb}$$
$$\sigma(T_{cc}^{+}) = (24^{+14}_{-7}) \text{ nb}$$

Detection of T_{cc}

$$f_{T_{cc}}/f_{\Xi_{cc}} \sim 1/4$$

$$Br(T_{cc})/Br(\Xi_{cc}^{++}) \sim 1/4$$
1500 events of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi$

[**QQ**,Shen,Yu, 2008.08026]

[LHCb,2109.01038;2109.01056]

Discovery potential of Ξ_{bc}

Who is to be shot next?

$\pi, K,$	D	В	η_c	B _c	η_b			
p, n, 	Λ_c	Λ_b				Ξ_{cc}	Ξ_{bc}	Ξ_{bb}
	X (2900)		Z_{c}			T _{cc}	T_{bc}	T_{bb}
			P_c					

$\sigma(\Xi_{bc}) = 37 \text{ nb} \text{ at } 14 \text{ TeV LHCb}$

[X.G.Wu, et al 1101.1130]

	2011	2012	2018	2023	2029	2035
LHCb	Ru	ın I	Run II	Run II Run III		Run V
Integrated Iuminosity	1 fb ⁻¹	3 fb ⁻¹	9 fb ⁻¹	23 fb ⁻¹	50 fb ⁻¹	300 fb-

Billions of Ξ_{bc} will be produced @ LHCb Run3.

Difficulties in experimental searches for Ξ_{bc}

Detection efficiency -- small exclusive branching ratios ullet

_	channels	$\Gamma/~{\rm GeV}$	\mathcal{B}	channels	$\Gamma/~{ m GeV}$	B
\langle	$\Xi_{bc}^{0} \to \Lambda_{c}^{+} \pi^{-}$	1.13×10^{-18}	1.60×10^{-7}	$\Xi^0_{bc} \to \Lambda^+_c \rho^-$	3.31×10^{-18}	4.68×10^{-7}
3) 81	$\Xi_{bc}^0 \to \Lambda_c^+ a_1^-$	4.42×10^{-18}	6.24×10^{-7}	$\Xi^0_{bc} \to \Lambda^+_c K^-$	9.36×10^{-20}	$1.32 imes 10^{-8}$
	$\Xi^0_{bc} \to \Lambda^+_c K^{*-}$	1.70×10^{-19}	2.41×10^{-8}	$\Xi^0_{bc}\to \Lambda^+_c D^-$	2.27×10^{-19}	$3.21 imes 10^{-8}$
	$\Xi^0_{bc} \to \Lambda^+_c D^{*-}$	2.42×10^{-19}	$3.42 imes 10^{-8}$	$\Xi^0_{bc}\to \Lambda^+_c D^s$	6.23×10^{-18}	$8.80 imes 10^{-7}$
_	$\Xi_{bc}^0 \to \Lambda_c^+ D_s^{*-}$	5.82×10^{-18}	8.22×10^{-7}			
	$\Xi_{bc}^0 o \Sigma_c^+ \pi^-$	1.12×10^{-18}	1.58×10^{-7}	$\Xi_{bc}^{0}\to \Sigma_{c}^{+}\rho^{-}$	3.53×10^{-18}	$4.99 imes 10^{-7}$
	$\Xi_{bc}^0 \to \Sigma_c^+ a_1^-$	5.24×10^{-18}	7.41×10^{-7}	$\Xi^0_{bc}\to \Sigma^+_c K^-$	9.16×10^{-20}	$1.29 imes 10^{-8}$
	$\Xi_{bc}^0 \to \Sigma_c^+ K^{*-}$	1.86×10^{-19}	$2.63 imes 10^{-8}$	$\Xi^0_{bc}\to \Sigma^+_c D^-$	1.96×10^{-19}	$2.77 imes10^{-8}$
	$\Xi_{bc}^0 \to \Sigma_c^+ D^{*-}$	3.85×10^{-19}	5.44×10^{-8}	$\Xi_{bc}^{0} \to \Sigma_{c}^{+} D_{s}^{-}$	5.34×10^{-18}	$7.55 imes 10^{-7}$
-	$\Xi_{bc}^0 \to \Sigma_c^+ D_s^{*-}$	9.73×10^{-18}	1.38×10^{-6}			

[W. Wang, F.S. Yu, Z.X. Zhao, 1707.02834]

• First experimental attempts (LHCb, 13 TeV, ~ 5 fb⁻¹)

$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \frac{B(\Xi_{bc}^{0} \to D^{0}pK^{-})}{B(\Lambda_{b}^{0} \to D^{0}pK^{-})} < [1.7,30]\%$$

[LHCb, 2009.02481]

$$< [0.6, 3] \times 10^{-10}$$

$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \frac{B(\Xi_{bc}^{0} \to \Lambda_{c}^{+}\pi^{-})}{B(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\pi^{-})} < [0.5, 2.5] \times 10^{-10}$$

$$\frac{\sigma(\Xi_{bc}^{0})}{\sigma(\Lambda_{b}^{0})} \frac{B(\Xi_{bc}^{0} \to \Xi_{c}^{+}\pi^{-})}{B(\Lambda_{b}^{0} \to \Xi_{c}^{+}\pi^{-})} < [1.4, 6.9] \times 10^{-10}$$

[LHCb, 2104.04759]

$$\left(B(\Lambda_b^0 \to \Lambda_c^+ \pi^-) = 4.9 \times 10^{-3}, \sigma(\Lambda_b^0) \sim 10 \ \mu b, \sigma(\Xi_{bc}^0) \sim 1$$

16

Generally, inclusive decays have (1) larger branching ratios but ullet(2) lower detection efficiencies

Basically impossible at hadron colliders

• However, for $\Xi_{bc} \to \Xi_{cc}^{++} + X$, the efficiency can be large by making use of the inform of displaced vertex

Inspired by the proposal to search for Ξ_{bb} via $\Xi_{bb} \rightarrow B_c + X$ [Gershon, Poluektov, 1810.06657]

- Ξ_{bc} is (almost) the only source for displaced Ξ_{cc} 's
- The $B_c \rightarrow \Xi_{cc}^{++} + X$ decay is highly suppressed

A novel approach — — inclusive Ξ_{bc} search

p IP

[**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

Calculation of $\Xi_{bc} \rightarrow \Xi_{cc} + X$

- First important fact: $\Xi_{bc} \rightarrow \Xi_{cc} + X = \Xi_{bc}$ H_{cc} include excited states of Ξ_{cc} , which still decay into Ξ_{cc}
- Regarding the heavy diquarks χ_{bc} and χ_{cc} as point-like particles, the decay at the quark-diquark level is

 $\chi_{bc} \rightarrow \chi_{cc} + \ell^{-} \bar{\nu}, \chi_{cc} + \bar{q} q'$

It is reasonable because $r_{QQ'} \sim 1/(m_Q v) \ll 1/\Lambda_{QCD}$ [e.g., Brodsky, Guo, Hanhart, Meissner, 1101.1983]

• By making use of OPE, the inclusive decay rate is expanded by powers of $1/M_{OO'}$ within the Heavy Diquark Effective Theory

$$bc \to H_{cc} + X$$

[Y.J.Shi, W.Wang, Z.X.Zhao, Meissner, 2002.02785]

$3 \text{ body} \rightarrow 2 \text{ body}$

Heavy diquark effective theory

Integrating out the degrees of freedom above Λ_{QCD} , the two heavy quark system can be regarded as a point-like heavy diquark, scalar or axial-vector

$$\begin{aligned} \mathscr{L}_{S} &= \frac{1}{2} (D_{\mu} S^{i})^{\dagger} (D^{\mu} S^{i}) - \frac{1}{2} m_{X}^{2} S^{i\dagger} S^{i} \\ \mathscr{L}_{X} &= -\frac{1}{2} [(D_{\mu} X_{\nu}^{i})^{\dagger} (D^{\mu} X^{i\nu}) - (D_{\mu} X_{\nu}^{i})^{\dagger} (D^{\nu} X^{i\mu})] + \frac{1}{2} m_{X}^{2} X_{\mu}^{i\dagger} X^{i\mu} \end{aligned}$$

- As HEQT for a heavy-light system (heavy meson), the big momentum $M_{X,S}v$ of a heavy diquark inside a doubly-heavy baryon can be integrated out by $X^{\mu} = e^{-im_{X}v \cdot x}(X^{\mu}_{v} + Y^{\mu}_{v})$
- Then only the Λ_{QCD} degrees of freedom are left, the expansion $(\Lambda_{QCD}/M_{XS})^n$ for inclusive decays can be performed. At the leading power,

$$B(\Xi_{bc} \to \Xi_{cc} + X) = B(\chi_{bc} \to \Xi_{cc} + X)$$

[Y.J.Shi, W.Wang, Z.X.Zhao, Meissner, 2002.02785]

 $\rightarrow \chi_{cc} + \ell^- \bar{\nu}, \chi_{cc} + \bar{q}q') + \mathcal{O}(1/M_{OO'})$

• The key issue is the 2-diquark-2-fermion interaction vertex, i.e. the $\chi_{bc} \rightarrow \chi_{cc}$ diquark current

 $\langle \chi_{cc}(v,\epsilon) | \bar{c}\gamma^{\mu}b | \chi_{bc}(v',\epsilon') \rangle \propto -a_0 \epsilon^* \cdot \epsilon' v'^{\mu} - a_1 \epsilon^* \cdot \epsilon' v^{\mu} + a_2 \epsilon^* \cdot v' \epsilon'^{\mu} + a_3 v \cdot \epsilon' \epsilon^{*\mu}$

 $\langle \chi_{cc}(v,\epsilon) | \bar{c}\gamma^{\mu}\gamma_5 b | \chi_{bc}(v',\epsilon') \rangle \propto -ib_0 \epsilon^{\epsilon'\epsilon^*v'\mu} - ib_1 \epsilon^{\epsilon'\epsilon^*v\mu}$

Matching the $b \to c$ current to the $\chi_{bc} \to \chi_{cc}$ diquark current \bullet (analogous to a transition form factor)

- The matching is performed differently for different kinematic \bullet regions, because of different dynamics
 - 1. Small recoil region (large q^2)
 - 2. Large recoil region (small q^2)

<u>Diquark \Rightarrow Quark</u>

[**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

- lacksquarestatic -- sharing the same velocity ν
- Heavy diquarks can be represented by a Lorentz bilinear field lacksquare

$$D_{v}^{QQ'}(x) = \frac{1 + v \cdot \gamma}{2} [\gamma^{\mu}A_{\mu}(x) + i\gamma_{5}S(x)]$$

$$Axial-vector Scalar$$

- Its Lorentz transformation $D_{\nu}(x) \rightarrow D'_{\nu'}(x') = \Lambda_{1/2} D_{\nu}(\Lambda^{-1}x) \Lambda_{1/2}^{\mathsf{T}}$
- Its conjugate field $\bar{D}_{\nu} = \gamma^0 D_{\nu}^{\dagger} \gamma^0$, which transforms as $\bar{D}_{\nu}(x) \rightarrow \bar{D}_{\nu'}(x') = [\Lambda_{1/2}^{-1}]^{\mathsf{T}} \bar{D}_{\nu}(\Lambda^{-1}x) \Lambda_{1/2}^{-1}$

• Then the matching comes to $\bar{c}\Gamma b = \text{tr } L^{\mathsf{T}} \bar{D}_{v'}^{cQ} \Gamma D_{v}^{bQ}$, with $L = L_0 + L_1 v \cdot \gamma + L_2 v' \cdot \gamma + L_3 (v \cdot \gamma) (v' \cdot \gamma)$

Small recoil region: in the heavy quark limit, the two heavy quarks in the heavy diquark are relatively

- Calculating the trace $\bar{c}\Gamma b = \text{tr} \left[L^{\mathsf{T}} \bar{D}_{v'}^{cQ} \Gamma D_{v}^{bQ} \right]$ for $\Gamma = \gamma_{\mu}, \gamma_{\mu}\gamma_{5}$, using $(v \cdot \gamma)D_{v} = D_{v}$
- It simplifies into

$$\frac{1}{\sqrt{2M_{bc}M_{cc}}}\langle\chi_{cc}(v,\epsilon)|\bar{c}\gamma^{\mu}b|\chi_{bc}(v',\epsilon')\rangle = \xi(w) \Big[-\epsilon^*\cdot\epsilon'v'^{\mu} - \epsilon^*\cdot\epsilon'v^{\mu} + \epsilon^*\cdot v'\epsilon'^{\mu} + v\cdot\epsilon'\epsilon^{*\mu}\Big]$$
$$\frac{1}{\sqrt{2M_{bc}M_{cc}}}\langle\chi_{cc}(v,\epsilon)|\bar{c}\gamma^{\mu}\gamma_5b|\chi_{bc}(v',\epsilon')\rangle = \xi(w) \Big[-i\epsilon^{\epsilon'\epsilon^*v'\mu} - i\epsilon^{\epsilon'\epsilon^*v\mu}\Big]$$

Only one function $\xi(w)$ with $w = v \cdot v'$ to be determined, similar to the famous Isgur-Wise function.

Making use of the state normalization we can fix ξ ullet

$$\xi(w=1) = 1$$
 \longrightarrow $a_{0,1,2,3}(q_{\max}^2) = b_{0,1}(q_{\max}^2) = 1$

[**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

- ullet
- The calculation via NRQCD gives ullet

$$a_{2,3}(q^2) = \frac{\alpha_s}{2(1-w)^2\sqrt{w}} \frac{N_c+1}{N_c} \frac{1}{m_c^3} R_{bc}(q^2)$$
$$a_0(q^2) = b_0(q^2) = \bar{\xi}_2 a_{2,3}(q^2), \ a_1(q^2) = b_1(q^2)$$

 \bullet

$$f(q^2) = \frac{f(0)}{1 - q^2/m_{B_c}^2} \left[1 + b\zeta(q^2) + c\zeta^2(q^2)\right]$$

[**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

Large recoil region: at least one hard gluon is to be exchanged, and is thus perturbatively calculable

At last, we connect the two regions by making a numerical fit accepting the z-series expansion formula

Calculation of $\Xi_{bc} \rightarrow \Xi_{cc} + X$

Numerical result for the decay width

$$\Gamma(\Xi_{bc} \to \Xi_{cc} + X) = (1.9 \pm 0.$$

Uncertainties from quark mass, wave function at origin, scale dependence

• Lifetime [H.Y.Cheng, F.R.Xu, 1903.08148]

93fs <
$$\tau(\Xi_{bc}^{0})$$
 < 108 fs, 409 fs < $\tau(\Xi_{bc}^{+})$ < 607 fs

• The branching ratio is

$$B(\Xi_{bc}^+ \to \Xi_{cc} + X) \approx 14\%,$$

• Ξ_{cc}^{++} fragmentation suffers a factor of 1/2

$$B(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X) \approx 7\%, \quad B(\Xi_{bc}^{0} \to \Xi_{cc}^{++} + X) \approx 1.5\%$$

$.1 \pm 0.3 \pm 0.4) \times 10^{-13}$ GeV

$$B(\Xi_{bc}^0 \to \Xi_{cc} + X) \approx 3\%$$

Search for
$$\Xi_{bc}^+ \to \Xi_{cc}^{++} + X$$
 with displaced Ξ_{cc}^{++}

Estimation of signal yield

$$N(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X) = N_p(\Xi_{bc}^{+}) \cdot B(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X) \cdot \epsilon(\Xi_{cc}^{++})$$
$$= N_d(\Xi_{cc}^{++}) \cdot \frac{\sigma(\Xi_{bc})}{\sigma(\Xi_{cc})} \cdot B(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X)$$

(The detection efficiency is identical to that of Ξ_{cc}^{++})

Three ingredients:

1. Number of signals of Ξ_{cc}^{++} : 10000 for 23 fb⁻¹ (Run III, by 2024)

2. Production ratio $\sigma(\Xi_{bc})/\sigma(\Xi_{cc}) \approx 40\%$ [X.G.Wu et al, 1101.1130]

3. Branching fraction of inclusive dec

cay of
$$\Xi_{bc}^+ \to \Xi_{cc}^{++} + X$$

Search for $\Xi_{bc} \rightarrow \Xi_{cc}^{++} + X$ with displaced Ξ_{cc}^{++}

Final number of estimated signal events @ LHCb Run3

$$N(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X) = N(\Xi_{cc}^{++}) \cdot \frac{2}{3}$$
$$\approx 10^{4} \times 40\%$$
$$\approx 280$$

With possible efficiency lost, it should still be detectable @ LHCb Run3 ullet

$\frac{\sigma(\Xi_{bc}^{+})}{\sigma(\Xi_{cc})} \cdot B(\Xi_{bc}^{+} \to \Xi_{cc}^{++} + X)$

 $\% \times 7\%$

[**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

Conclusion

More is better: we want more new hadrons.

 T_{cc}^+ discovery at the LHCb.

 Ξ_{cc}^{++} , with about 280 signal events to be observed @ LHCb Run 3.

We predicted the <u>correct discovery channel</u> and the <u>correct signal yield</u> for the

• We propose to search for Ξ_{bc} via inclusive $\Xi_{bc}^+ \to \Xi_{cc}^{++} + X$ with a displaced

Thank you!