Spin entanglement in neutron-proton scattering

Dong BAI (柏 栋)

College of Science, Hohai University

October 28, 2023

第八届手征有效场论研讨会

1

Quantum entanglement

Q: What are **entangled states**?

A: First define what states are **not** entangled (aka **separable**), and the complementary set contains all the **entangled** states.

◦ **Separable** (pure) state: If an *N*-partite state (*N* = 2, bipartite state) can be decomposed into the tensor product of quantum states of its subunits

$$
|\Phi\rangle = |\phi_1\rangle \otimes |\phi_2\rangle \otimes \cdots \otimes |\phi_N\rangle ,
$$

it is a **separable** state.

◦ **Entangled** state: If an *N*-partite state is not **separable**, it is an **entangled** state.

◦ Example: Bell states

$$
\begin{aligned} |\Phi^+\rangle &= \frac{1}{\sqrt{2}}(|\!\!\uparrow\uparrow\rangle + |\!\!\downarrow\downarrow\rangle), \quad |\Phi^-\rangle = \frac{1}{\sqrt{2}}(|\!\!\uparrow\uparrow\rangle - |\!\!\downarrow\downarrow\rangle),\\ |\Psi^+\rangle &= \frac{1}{\sqrt{2}}(|\!\!\uparrow\downarrow\rangle + |\!\!\downarrow\uparrow\rangle), \quad |\Psi^-\rangle = \frac{1}{\sqrt{2}}(|\!\!\uparrow\downarrow\rangle - |\!\!\downarrow\uparrow\rangle). \end{aligned}
$$

◦ The term **"entanglement"** was introduced by **Schrödinger**, Math. Proc. Cambridge Philos. Soc. **31**, 555 (1935), as a response to **E**instein, **P**oldosky, and **R**osen, Phys. Rev. **47**, 777 (1935).

◦ **At the very beginning of that paper** :

"When two systems, of which we know the states by their respective representatives, enter into temporary physical interaction due to known forces between them, and when after a time of mutual influence the systems separate again, then they can no longer be described in the same way as before, viz. by endowing each of them which a representative of its own. I would not call that one but rather the characteristic trait of quantum mechanics, the one that enforce its entire departure from classical lines of thought."

◦ **entanglement generation by nuclear forces?**

Spin entanglement in neutron-proton scattering

◦ Lamehi-Rachti & Mittig, PRD (1976): test Bell's inequality in *p* + *p* scattering, less known in nuclear physics.

◦ **Beane, Kaplan, Klco & Savage, PRL (2019)**: **the** *S***-wave approximation**, followed up by Low & Mehen (2021), etc.

◦ **DB**, Phys. Lett. B **845**, 138162 (2023): **beyond the** *S***-wave approximation**, submitted on May 4, 2023, discussed in this talk. *◦* See also G. A. Miller, Phys. Rev. C **108**, L031002 (2023): similar work, submitted on June 5, 2023. ■ **Basic picture**: neutron-proton scattering (distinguishable **qubits**) *◦* **Qubit**: quantum mechanical two-level system

Given
$$
|\text{in}\rangle = |\textbf{p}\rangle |\chi_{\text{in}}\rangle
$$
, $|\text{out}\rangle$ is given by
\n $|\text{out}\rangle = \int d^2 \hat{p}' |\textbf{p}'\rangle \hat{S}(\textbf{p}', \textbf{p}) |\chi_{\text{in}}\rangle$,
\n $\hat{S}(\textbf{p}', \textbf{p}) \equiv \sum_{\substack{m'_1 m'_2 \\ m_1 m_2}} \hat{S}_{m'_1 m'_2 m_1 m_2}(\textbf{p}', \textbf{p}) |m'_1 m'_2\rangle \langle m_1 m_2|$,
\nwith $\langle \textbf{p}' m'_1 m'_2 | S | \textbf{p} m_1 m_2 \rangle = \frac{\delta(E_{\textbf{p}'} - E_{\textbf{p}})}{\mu_{\textbf{p}}}$
\n $\times \hat{S}_{m'_1 m_2 m_1 m_2}(\textbf{p}', \textbf{p}).$

■ **Our goal:** work out spin entanglement with the *exact* neutronproton *S*-matrix and analyze its properties from different perspectives. \circ As $\hat{S}(p',p) = \delta^2(\hat{p}'-\hat{p})\mathbf{1}_4 + i\frac{p}{2\pi}M(p',p)$, the spin component of the out state at a *specific* $p' \neq p$ is given by

$$
\ket{\text{out}} = \int d^2 \hat{p}' \ket{p'} \hat{S}(p',p) \ket{\chi_{\text{in}}} \ \Rightarrow \ \ket{\chi_{\text{out}}} = M(p',p) \ket{\chi_{\text{in}}}.
$$

Neutron-proton spin amplitude:

The spin amplitude $M(p', p)$, as a 4×4 matrix, can be expanded in terms of $\{\sigma_u \otimes \sigma_v\}$, with $\sigma_u = (1_2, \sigma_x, \sigma_v, \sigma_z)$.

◦ First pioneered by **Wolfenstein** in 1950s.

◦ Later on, similar parameterizations proposed by other groups, e.g., **Saclay**, Hoshizaki, Helicity, Singlet-Triplet.

Saclay amplitude system: (invariant under parity, time reversal, isospin, ...)

$$
M(p',p) = \frac{1}{2} \left\{ (a+b) + (a-b)(\sigma_1 \cdot n)(\sigma_2 \cdot n) + (c+d)(\sigma_1 \cdot n)(\sigma_2 \cdot m) + (c-d)(\sigma_1 \cdot l)(\sigma_2 \cdot l) + (e+f)\sigma_1 \cdot n + (e-f)\sigma_2 \cdot n \right\},\
$$

where *l*, *m*, *n* are the unit vectors

$$
l=\frac{p'+p}{|p'+p|}, \quad m=\frac{p'-p}{|p'-p|}, \quad n=\frac{p\times p'}{|p\times p'|},
$$

and *a*, *b*, *c*, *d*, *e*, *f* are the six Saclay amplitudes depending on the relative momentum *p* and the angle *θ* between *p* and *p ′* .

Entanglement power and concurrence

■ **Entanglement power:** quantify entanglement generation capability of a quantum operator

$$
\mathcal{E}(\mathbf{M}) = \int \frac{d\Omega_1}{4\pi} \int \frac{d\Omega_2}{4\pi} (1 - \text{Tr}_1(\rho_1^2)),
$$

\n
$$
|\chi_{\text{in}}\rangle = [\cos(\theta_1/2) | \uparrow\rangle_1 + \exp(i\phi_1) \sin(\theta_1/2) | \downarrow\rangle_1]
$$

\n
$$
\otimes [\cos(\theta_2/2) | \uparrow\rangle_2 + \exp(i\phi_2) \sin(\theta_2/2) | \downarrow\rangle_2],
$$

\n
$$
|\chi_{\text{out}}\rangle = \mathbf{M}(\mathbf{p}', \mathbf{p}) | \chi_{\text{in}}\rangle,
$$

\n
$$
\rho_{12} = |\chi_{\text{out}}\rangle\langle\chi_{\text{out}}| / \langle\chi_{\text{out}}|\chi_{\text{out}}\rangle, \quad \rho_1 = \text{Tr}_2(\rho_{12}),
$$

i.e., averaging the 2-entropy of $|\chi_{\text{out}}\rangle$ over all the possible $|\chi_{\text{in}}\rangle$. P. Zanardi, Phys. Rev. A **63**, 040304(R) (2001)

E Concurrence: quantify spin entanglement of a specific $| \chi_{\text{out}} \rangle$. ϕ With $|\chi_{\text{out}}\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$, the concurrence is given by $\Delta(p,\theta) = 2|\alpha\delta - \beta\gamma|$

satisfying $0 \leq \Delta(p, \theta) \leq 1$, with $\Delta(p, \theta) = 0$ and $\Delta(p, \theta) = 1$ being separable and maximally entangled states. **⁷** $\mathcal{E}(M)$ as a function of the relative momentum p at $\theta = \pi/4$, $\pi/2$, $3\pi/4$, and π , taking the PWA93 amplitude and phase-shift data from the Nijmegen group as inputs.

V. G. J. Stoks *et al.*, Phys. Rev. C **48**, 792 (1993).

Dependence of $E(M)$ on *p* and θ . $E(M)$ takes the maximal value at $(p, \theta) \approx (238 \text{ MeV}, 113^{\circ}).$

The dependence of the out-state concurrence $\Delta(p,\theta)$ on the relative momentum p and the scattering angle θ , when taking different initial spin orientations.

 \langle (a) $| \uparrow \uparrow \rangle$, (b) $| \uparrow \downarrow \rangle$, (c) $| \uparrow \rangle \otimes \frac{1}{\sqrt{2}}(| \uparrow \rangle + | \downarrow \rangle)$, (d) $| \uparrow \rangle \otimes \frac{1}{\sqrt{2}}(| \uparrow \rangle - | \downarrow \rangle)$, (e) $|\uparrow\rangle \otimes \frac{1}{\sqrt{2}}(|\uparrow\rangle + i|\downarrow\rangle),$ (f) $|\uparrow\rangle \otimes \frac{1}{\sqrt{2}}(|\uparrow\rangle - i|\downarrow\rangle)$

Symmetry emergence and entanglement extrema

At low energies with $p \ll M_\pi$, the $n + p$ scattering can be described by **pionless effective field theory** (*πEFT*) at leading order (LO)

$$
\mathcal{L}_{LO} = \mathcal{L}_{kin} + \mathcal{L}_{int},
$$

\n
$$
\mathcal{L}_{kin} = N^{\dagger} \left(i \partial_t + \frac{\nabla^2}{2M_N} \right) N,
$$

\n
$$
\mathcal{L}_{int} = -\frac{C_S}{2} (N^{\dagger} N) (N^{\dagger} N) - \frac{C_T}{2} (N^{\dagger} \sigma N) \cdot (N^{\dagger} \sigma N),
$$

with $N = (n_{\uparrow}, n_{\downarrow}, p_{\uparrow}, p_{\downarrow})^T$ being the nucleon field, and C_S , C_T being the low-energy constants.

■ The neutron-proton *S*-matrix is given by

$$
\hat{\mathbf{S}}(p) = \delta^2(\hat{p}' - \hat{p})\hat{\mathbf{1}}_4 + i\frac{p}{2\pi}\mathbf{M}(p),
$$

$$
\mathbf{M}(p) = \frac{1}{8ip} \left[(3e^{2i\delta_1} + e^{2i\delta_0} - 4)\hat{\mathbf{1}}_4 + (e^{2i\delta_1} - e^{2i\delta_0})\hat{\boldsymbol{\sigma}} \cdot \hat{\boldsymbol{\sigma}} \right],
$$

with δ_0 and δ_1 being the ¹S₀ and ³S₁ phase shift.

■ **Effective range expansion**

In the low-energy limit $p \to 0$,

$$
e^{2i\delta_{0,1}} = \frac{1 + i\tan \delta_{0,1}}{1 - i\tan \delta_{0,1}} = \frac{1 - ipa_{0,1}}{1 + ipa_{0,1}},
$$

with a_0 and a_1 being ¹S₀ and ³S₁ scattering lengths.

■ **Wigner symmetry**

 $N = (n_{\uparrow}, n_{\downarrow}, p_{\uparrow}, p_{\downarrow})^T$ is the fundamental representation of SU(4) $N \rightarrow SU(4)N$.

It becomes the exact symmetry as $C_T \rightarrow 0$,

$$
\mathcal{L}_{\text{int}} = -\frac{C_S}{2} (N^{\dagger} N)(N^{\dagger} N).
$$

Correspondingly, the scattering lengths satisfy $a_0 = a_1$.

■ **Schrödinger symmetry (nonrelativistic conformal symmetry)** When $(|a_0|, |a_1|) = (0, 0), (0, \infty), (\infty, 0)$ and $(\infty, \infty), \pi$ EFT has Schrödinger symmetry at LO. **12**

■ **Spin entanglement** *vs* **symmetry emergence**

◦ First pioneered by S. R. Beane *et al.*, Phys. Rev. Lett. **122**, 102001 (2019).

 \circ I study the connection between the residual entanglement power $\mathcal{E}_0(a_0, a_1)$ and symmetry emergence.

- **Symmetry emergence** appears when $a_0 = a_1 \rightarrow$ Wigner symmetry and $(|a_0|, |a_1|) = (0, 0), (0, \infty), (\infty, 0), (\infty, \infty) \rightarrow$ Schrödinger symmetry.
- **Entanglement extrema** appear at $|a_0| = |a_1|, |a_0| = 0$ and $|a_1| = 0 \Rightarrow$ The appearance of **entanglement extrema** provides the necessary condition for symmetry emergence in the neutron-proton system.

Summary

■ Spin entanglement in neutron-proton scattering

◦ go beyond the *S*-wave approximation: strong dependence on relative momentum, scattering angle, and initial spin configuration; *◦* entanglement extrema as necessary conditions for emergent

low-energy symmetries in the neutron-proton system.

◦ see **DB**, 2308.12327 for preliminary results towards experimental determination of spin entanglement of nucleon pairs.

