Lattice QCD study of the Exotic states

Liuming Liu Institute of Modern Physics, CAS

第八届手征有效场论研讨会 开封, 2023年10月27-31

- conventional quark model are discovered in experiments.
- two hadrons.
- structure of the exotic hadrons.
 - Scattering on lattice.
 - Preliminary results on the hidden-charm pentaquarks.
 - Preliminary results on $D\pi$ scattering.

 Since 2003, large amount of new hadronic states beyond the ♦ Nearly all of the exotic candidates are close to the thresholds of

Study of the hadron scattering is a main approach to probe the

Lüscher's finite volume method:

Scattering on lattice

M. Lüscher, Nucl. Phys. B354, 531(1991)

Resonances/bound states are formally defined as poles in scattering amplitudes.

Scattering on lattice

- Finite volume spectrum: construct the matrix of correlation function:
 - $C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0$
- Eigenvalues: $\lambda_n(t) \sim e^{-E_n t} (1 + e^{-\Delta E t})$
- Computational technique: distillation quark smearing.

 \bullet build large basis of operators { $\mathcal{O}_1, \mathcal{O}_2, \cdots$ } with desired quantum numbers,

$$0 > = \sum_{n} Z_i^n Z_j^{n*} e^{-E_n t}$$

♦ Solve the generalized eigenvalue problem(GEVP): $C_{ii}v_i^n(t) = \lambda_n(t)C_{ii}^0v_i^n(t)$

• Optimal linear combinations of the operators to overlap on the n'th state: $\Omega_n = \sum v_i^n \mathcal{O}_i$

• Improve precision • Disconneted diagrams • Efficient for large numbers of ops

• 2+1 flavor Wilson-clover configurations generated by CLQCD.

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	
~0.108fm	$24^3 \times 72$	290	
	$32^3 \times 64$	290	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
	$48^3 \times 96$	140	
~0.080fm	$32^3 \times 96$	300	
	$48^3 \times 96$	300	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
~0.055fm	$48^3 \times 144$	300	

arXiv: 2310.00814

Lattice QCD configurations

of confs

1	0	0	0

1000

- 450
- 200
- 200

460

200

200

- 200

- 480

洋南師範大學 SOL TH OHINA NORMAL UN

IMP

- 上海交通大學

- 中国科学院高能物理研究所

• 2+1 flavor Wilson-clover configurations generated by CLQCD.

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	
~0.108fm	$24^3 \times 72$	290	
	$32^3 \times 64$	290	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
	$48^3 \times 96$	140	
~0.080fm	$32^3 \times 96$	300	
	$48^3 \times 96$	300	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
~0.055fm	$48^3 \times 144$	300	

Lattice QCD configurations

of confs

中国科学院近代物理研究所

上海交通大學

P_c Pentaquarks

P_c Pentaquarks

 $\Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ scattering $(J^P = \frac{1}{2})$:

 The finite-volume energies lie below the free energies, indicating rather strong attractive interactions.

Scattering amplitude:

$$T \sim \frac{1}{p \cot \delta - ip}$$

Bound state pole:

$$p = i |p_B|$$

Effective range expansion:

$$pcot\delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \cdots$$

$$\Sigma_c \bar{D} : P_c(4312)$$

 $a_0 = -2.0(3)(2)$
 $E_B = 6(2)(2)$

Luscher's formula:

$$pcot\delta(p) = \frac{2Z_{00}(1;(\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$$

$$\Sigma_c \bar{D}^* : P_c(4440)$$

 $a_0 = -2.3(5)(E_B = 7(3)(1)M$

Results

Coupled channels: $\eta_c N, J/\psi N, \Lambda_c N$

 \bigstar 15 operators for the L = 32 ensemble: $\mathcal{O}_{1,2,3} = N(\mathbf{p})\eta_c(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{4.5} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$ $\mathcal{O}_{6,7,8} = \Lambda_c(\mathbf{p})\bar{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{9,10} = \Lambda_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$ $\mathcal{O}_{11,12,13} = \Sigma_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{14,15} = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$

$$\bar{D}, \Lambda_c \bar{D}^*, \Sigma_c \bar{D}, \Sigma_c \bar{D}^*$$

+23 operators for the L = 48 ensemble: $\mathcal{O}_{1,2,3,4,5} = N(\mathbf{p})\eta_c(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3,4)$ $\mathcal{O}_{7,8,9,10} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3)$ $\mathcal{O}_{10,11,12,13,14} = \Lambda_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3,4)$ $\mathcal{O}_{15,16,17,18} = \Lambda_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3)$ $\mathcal{O}_{19,20,21} = \Sigma_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{22,23} = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$

★L = 48 ensemble:
$$th∞ 1.700$$

$$th∞ 1.700$$

$$O1,2,3,4,5 = N(\mathbf{p})\eta_c(-\mathbf{p}) (\mathbf{p}^2 = 0,1,2,3,4)$$

$$1.675$$

$$O7,8,9,10 = N(\mathbf{p})J/\psi(-\mathbf{p}) (\mathbf{p}^2 = 0,1,2,3)$$

$$1.650$$

$$O10,11,12,13,14 = Λc(\mathbf{p})\overline{D}(-\mathbf{p}) (\mathbf{p}^2 = 0)$$

$$1.625$$

1.600 -

★ L = 32 ensemble:

$$\mathcal{O}_{4,5} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$$

 $\mathcal{O}_{11,12,13} = \Sigma_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$
 $\mathcal{O}_{14,15} = \Sigma_c(\mathbf{p})\overline{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$
★ L = 48 ensemble:
 $\mathcal{O}_{7,8,9,10} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3)$
 $\mathcal{O}_{19,20,21} = \Sigma_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$
 $\mathcal{O}_{22,23} = \Sigma_c(\mathbf{p})\overline{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$
1.70 -

- A narrow exotic hadronic state with $J^{PC} = 0^{--}$ was predicted in T. Ji, X.-K. Dong, F.-K, Guo and B.-S. Zou, PRL. 129, 102002 (2022) $\psi_0(4360) \longrightarrow D^*D_1$
- Scalar and axial vector charmed mesons: 0^+ 1+ D_{s0}^* : 2317.8 ± 0.5MeV $D_{s1}(2460), \quad D_{s1}(2536)$ $D_1(2420), \quad D_1(2430)$ $D_0^*: 2343 \pm 10 \text{MeV}$
- $D^{(*)}\pi, D^{(*)}K$ scattering.

Hao-bo Yan(PKU)

- $P = \frac{2\pi}{r} \{ (0,0,0), (0,0,1), (0,1,1), (1,1,1), (0,0,2) \}.$
- The finite volume spectra:

$D\pi$ scattering

Many interpolating operators are used, including both rest frame and moving frames

- Single channel analysis indication of the set of the
- Coupled channels:
 - Need robust determination of the spectrum with a complete set of interpolating operators.
 - Coupled channel scattering analysis.
- ♦ At $m_{\pi} \sim 300$ MeV, a virtual bound state is found in $I = \frac{1}{2}$ S-wave $D\pi$ scattering.

• Single channel analysis indicates bound states in $\Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$

