

Study of near-threshold exotic state from coupled-channel effect

Zhi Yang (杨智)

University of Electronic Science and Technology of China, Chengdu (电子科技大学,成都)

Based on Phys.Rev.Lett. 128,112001(2022); JHEP01(2023)058; arXiv: 2306.12406 In collaboration with 王广娟, 吴佳俊, Makoto Oka, 朱世琳

第八届手征有效场论研讨会 开封 2023/10/29

Meson

• $D_{s0}(2317)$ and $D_{s1}(2460)$

✤ *X*(3872)

Compact multiquark

Hadronic molecule

$D_{s0}(2317)$ and $D_{s1}(2460)$ in quark model

The relativized quark model Godfrey, Isgur, Phys. Rev. D 32,189 (1985)

.

1. Yu. S. Kalashnikova, Phys.Rev.D 72, 034010 (2005)

🖙 Charmonium

2. F.-K. Guo, S. Krewald, and U.-G. Meißner, Phys.Lett.B 665,157 (2008) Z.-Y. Zhou and Z. Xiao, Phys. Rev. D 84, 034023 (2011)

Charmed and charmed-strange spectra

3. Y. Lu, M. N. Anwar, B. S. Zou, Phys.Rev.D 94, 034021 (2016)

Bottomonium

• Coupled-channel effect due to hadron loop could cause sizable mass shift on the state in quark model.

- 1. Finite-volume matrix Hamiltonian model for a Δ→Nπ system J.M.M. Hall, A.C.-P. Hsu, D.B. Leinweber, A.W.Thomas, R.D. Young Phys.Rev. D87 (2013) no.9, 094510
- 2. Finite-volume Hamiltonian method for coupled-channels interactions in lattice QCD Jia-Jun Wu, T.-S.H.Lee, A.W.Thomas, R.D. Young Phys.Rev. C90 (2014) no.5, 055206
- 3. Hamiltonian effective field theory study of the N*(1535) resonance in lattice QCD Z.-W. Liu, W. Kamleh, Derek B. Leinweber, Finn M. Stokes, Anthony W. Thomas, J.-J. Wu Phys.Rev.Lett. 116 (2016) no.8, 082004
- 4. Lattice QCD Evidence that the Λ(1405) Resonance is an Antikaon-Nucleon Molecule J.M.M. Hall, W. Kamleh, D. B. Leinweber, B.J. Menadue, B.J. Owen, A.W.Thomas, R.D. Young Phys.Rev.Lett. 114 (2015), 132002
- 5. Hamiltonian effective field theory study of the N*(1440) resonance in lattice QCD Z.-W. Liu, Waseem Kamleh, Derek B. Leinweber, Finn M. Stokes, Anthony W. Thomas, J.-J. Wu Phys.Rev. D95 (2017) no.3, 034034
- 6. Structure of the Λ(1405) from Hamiltonian effective field theory Zhan-Wei Liu, Jonathan M.M. Hall, Derek B. Leinweber, Anthony W. Thomas, Jia-Jun Wu Phys.Rev. D95 (2017) no.1, 014506
- 7. Nucleon resonance structure in the finite volume of lattice QCD Jia-jun Wu, H. Kamano, T.-S.H.Lee , Derek B. Leinweber, Anthony W. Thomas Phys.Rev. D95 (2017) no.11, 114507
- 8. Structure of the Roper Resonance from Lattice QCD Constraints Jia-jun Wu, Derek B. Leinweber, Zhan-wei Liu, Anthony W. Thomas Phys.Rev. D97 (2018) no.9, 094509
- 9. Kaonic Hydrogen and Deuterium in Hamiltonian Effective Field Theory Zhan-wei Liu, Jia-jun Wu, Derek B. Leinweber, Anthony W. Thomas Phys.Lett.B 808(2020),135652
- 10. Partial Wave Mixing in Hamiltonian Effective Field Theory Yan Li, Jia-jun Wu, Curtis D. Abell, Derek B. Leinweber, Anthony W. Thomas Phys.Rev. D101(2020) no.11,114501
- 11. Hamiltonian effective field theory in elongated or moving finite volume Yan Li, Jia-jun Wu, Derek B. Leinweber, Anthony W. Thomas Phys.Rev. D103(2021) no.9, 094518

The Hamiltonian reads

$$H = H_0 + H_I,$$

where the non-interacting one is

$$H_0 = \sum_B |B\rangle m_B \langle B| + \sum_\alpha \int d^3 \vec{k} |\alpha(\vec{k})\rangle E_\alpha(\vec{k}) \langle \alpha(\vec{k})|.$$

And the interacting one includes two parts

D_s mesons in quark model

- Fit the updated masses of low-lying states away from thresholds
- Our fit is more consistent with observation.

Four near-threshold D_s states in quark model

Transformation from physical bases to the							1.	956	
heavy quark limit bases.									
	$c\overline{s}$ cores		cha	nnel		GI result	S		
	$B(^{2S+1}L_J\rangle)$	B(mass)	α	L					
$D_{s0}^{*}(2317)$	$ ^{3}P_{0} angle$	2405.9	DK	\overline{S}	$J^P = 1^+$	$B(^{2S+1}L_J\rangle)$	B(mass)	α	L
$D_{s1}^{*}(2460)$	$0.68 ^{1}P_{1} angle - 0.74 ^{3}P_{1} angle$	2511.5	D^*K	S, D	$D_{s1}^{*}(2460)$	$-0.97 ^{1}P_{1}\rangle + 0.24 ^{3}P_{1}\rangle$	2549.7	D^*K	S, D
$D_{s1}^{*}(2536)$	$= -0.99\phi_s + 0.13\phi_d$ -0.74 ¹ P ₁ > - 0.68 ³ P ₁ = -0.13\phi_s - 0.99\phi_d	\rangle 2537.8	D^*K	S, D	$D_{s1}^{*}(2536)$	$= 0.76\phi_s - 0.65\phi_d$ -0.24 ¹ P ₁ > - 0.97 ³ P ₁ > = -0.65\phi - 0.76\phi.	2559.46	D^*K	S, D
$D_{s2}^{*}(2573)$	$ ^{3}P_{2} angle$	2571.2	DK, D^*K	C D		$=-0.05\varphi_s-0.10\varphi_d$	1		
$\begin{array}{l} \phi_s \ = \ \left \frac{1}{2}_l \otimes \frac{1}{2}_h \right\rangle \\ \phi_d \ = \ \left \frac{3}{2}_l \otimes \frac{1}{2}_h \right\rangle \end{array}$									

- Ds(2317) and Ds(2460) are much heavier than detected.
- The bare 1⁺ states are almost purely given by the states with heavy-quark spin bases.

Fit the lattice data : $D_s(2317,2460,2536)$

Fit the lattice data : $D_s(2317,2460,2536)$

• With fixed
$$\Lambda = 1.0 \text{ GeV}$$
, $\chi^2/\text{dof} = 0.95$
 $g_c = 4.2^{+2.2}_{-3.1}$, $\Lambda' = 0.323^{+0.033}_{-0.031} \text{ GeV}$
 $\gamma = 10.3^{+1.1}_{-1.0}$

Lattice data from: C. B. Lang et al., **Phys. Rev. D 90, 034510 (2014);** G. S. Bali et al., **Phys. Rev. D 96, 074501 (2017)**

Component and pole mass

• Component

 $(H_0 + H_I)|\Psi\rangle = E|\Psi\rangle$ $|\Psi_E\rangle = C_0|B\rangle + \sum_{\vec{k}_n = \frac{2\pi}{L}\vec{n}} C_E(\vec{k}_n)|\alpha(\vec{k}_n)\rangle$ Eigenvector Component

• Pole mass

In the infinite volume, the scattering T-matrix reads

$$T_{\alpha,\beta}(k,k';E) = \mathcal{V}_{\alpha,\beta}(k,k';E) + \sum_{\alpha'} \int q^2 dq \frac{\mathcal{V}_{\alpha,\alpha'}(k,q;E)T_{\alpha,\beta}(q,k';E)}{E - E_{\alpha'}(q) + i\epsilon}$$

where the effective potential reads

$$\mathcal{V}_{\alpha,\beta}(k,k';E) = \sum_{B} \frac{g_{\alpha B}(k)g^*_{\beta B}(k')}{E - m_B} + V^L_{\alpha,\beta}(k,k').$$

state	L=4.57 fm	Pole mass at $L \to \infty$	
	$P(car{s})[\%]$	ours	exp
$D_{s0}^{*}(2317)$	$32.0^{+5.2}_{-3.9}$	$2338.9^{+2.1}_{-2.7}$	2317.8 ± 0.5
$D_{s1}^{*}(2460)$	$52.4^{+5.1}_{-3.8}$	$2459.4^{+2.9}_{-3.0}$	2459.5 ± 0.6
$D_{s1}^{*}(2536)$	$98.2^{+0.1}_{-0.2}$	$2536.6^{+0.3}_{-0.5}$ 2	2535.11 ± 0.06
$D_{s2}^{*}(2573)$	$95.9^{+1.0}_{-1.5}$	$2570.2\substack{+0.4 \\ -0.8}$	2569.1 ± 0.8

 $D_{s0}(2317), D_{s1}(2460)$

- Bare $c\bar{s}$ has strong coupling to S-wave $D^{(*)}K$ channels, and significant mass shift.
- Both the bare $c\bar{s}$ core and molecular components are significant and essential.

 $D_{s1}(2536), D_{s2}(2573)$

- Coupling to D-wave $D^{(*)}K$ channels can be neglected.
- Mainly pure $c\overline{s}$.

state	L=4.57 fm	Pole mass at $L \to \infty$	
	$P(car{s})[\%]$	ours	exp
$D_{s0}^{*}(2317)$	$32.0^{+5.2}_{-3.9}$	$2338.9^{+2.1}_{-2.7}$	2317.8 ± 0.5
$D_{s1}^{*}(2460)$	$52.4^{+5.1}_{-3.8}$	$2459.4^{+2.9}_{-3.0}$	2459.5 ± 0.6
$D_{s1}^{*}(2536)$	$98.2^{+0.1}_{-0.2}$	$2536.6^{+0.3}_{-0.5}$ 2	2535.11 ± 0.06
$D_{s2}^{*}(2573)$	$95.9^{+1.0}_{-1.5}$	$2570.2^{+0.4}_{-0.8}$	2569.1 ± 0.8

A. M. Torres, E. Oset, S. Prelovsek, and A. Ramos JHEP 05, 153 (2015)

 $P(KD) = 72 \pm 13 \pm 5 \%$, for the $D_{s0}^*(2317)$ $P(KD^*) = 57 \pm 21 \pm 6 \%$, for the $D_{s1}(2460)$

L.M. Liu, K. Orginos, F.-K. Guo, C. Hanhart, Ulf-G. Meissner Phys.Rev.D 87 (2013) 1,014508 $P(KD) = [0.68, 0.73], \text{ for the } D_{s0}^*(2317)$

- The heavy quark symmetry seems to be a good symmetry here.
- Use the same parameters as D_s .

Postprediction, not a fit !

15

↔ $D_{s0}(2317)$ and $D_{s1}(2460)$

✤ *X*(3872)

#1

Published in: Phys.Rev.D 32 (1985) 189-231

X(3872)

Experiment	Mass [MeV]	Width [MeV]		
Belle [63]	$3872\pm0.6\pm0.5$	< 2.3		
Belle [75]		_		
Belle [76]	$3875.4 \pm 0.7^{+0.4}_{-1.7} \pm 0.9$	-		
Belle [77]	$3871.46 \pm 0.37 \pm 0.07$	_		
Belle [78]	$3872.9^{+0.6}_{-0.4}$	$3.9^{+2.8+0.2}_{-1.4-1.1}$		
Belle [79]	-	_		
Belle [80]	$3871.84 \pm 0.27 \pm 0.19$	< 1.2		
CDF [67]	$3871.3 \pm 0.7 \pm 0.4$	-		
CDF [81]	-	_		
CDF [82]	-	-		
CDF [83]	$3871.61 \pm 0.16 \pm 0.19$	_		
DØ [68]	$3871.8 \pm 3.1 \pm 3.0$	_		
BaBar [84]	3873.4 ± 1.4	-		
BaBar [<mark>85</mark>]	$3871.3 \pm 0.6 \pm 0.1$	< 4.1		
	$3868.6 \pm 1.2 \pm 0.2$	-		
BaBar [<mark>86</mark>]	-	-		
BaBar [<mark>87</mark>]	$3875.1^{+0.7}_{-0.5}\pm0.5$	$3.0^{+1.9}_{-1.4}\pm0.9$		
BaBar [88]	$3871.4 \pm 0.6 \pm 0.1$	< 3.3		
	$3868.7 \pm 1.5 \pm 0.4$	_		
BaBar [89]	-	-		
BaBar [90]	$3873.0^{+1.8}_{-1.6}\pm1.3$	-		
LHCb [91]	$3871.95 \pm 0.48 \pm 0.12$	-		
LHCb [70]	-	-		
LHCb [92]	-	_		
CMS [73]	-	-		
BESIII [<mark>93</mark>]	$3871.9 \pm 0.7 \pm 0.2$	< 2.4		

Dbservation of a narrow charmonium-like state in exclusive $B^\pm o K^\pm \pi^+ \pi^- J/\psi$ decays	

- Belle Collaboration S.K. Choi (Gyeongsang Natl. U.) et al. (Sep, 2003)
- Published in: Phys.Rev.Lett. 91 (2003) 262001 e-Print: hep-ex/0309032 [hep-ex]

⊟ cite 🗟 claim

• The $D\overline{D}^*/D^*\overline{D}$ molecular state. Swanson, Wong, Guo, liu,....

Close to $D^0 \overline{D}^{*0} / D^{*0} \overline{D}^0$ thresholds $\delta m = m_{D^0 \overline{D}^{*0}} - m_{X(3872)}$ $= 0.00 \pm 0.18$ MeV

PDG 22

Phys. Rept. 639 (2016) 1-121

Where is the $\chi_{c1}(2P)$ in quark model?

• The mixing of the $\overline{c}c$ core with $D\overline{D}^*/D^*\overline{D}$ component. Chao, H. Q. Zheng, Yu. S. Kalashnikova, P. G. Ortega...

Close to charmonium $\chi_{c1}(2P)$: m=3953.5 MeV

 $\delta m = m_{\chi_{c1}(2P)} - m_{X(3872)} = 81.35 \text{ MeV}$

 \rightarrow Complicated coupled-channel effect: $\bar{c}c \& D\bar{D}^*/D^*\bar{D}$

Phys. Rev. D 32, 189 (1985)

- ✤ Quark content: $cc\bar{u}\bar{d}$
- Only the D*D coupled channel effect

- $D^0 D^0 \pi^+$ channel
- Close to D^{*+}D⁰ thresholds:

Conventional Breit-Wigner: assumed $J^P = 1^+$.

 $\delta m_{BW} = m_{T_{cc}} - m_{D^{*+}D^0}$ $= -273 \pm 61 \text{ keV}$

 $\Gamma_{BW} = 410 \pm 165 \text{keV}$

EPS-HEP conference, Ivan Polyakov's talk,29/07/2021; Nature Physics,22'

Unitarized Breit-Wigner:

$$\delta m_U = m_{T_{cc}} - m_{D^{*+}D^0}$$

= -361 ± 40 keV
$$\Gamma_U = 47.8 \pm 1.9 \text{ keV}$$

One-boson-exchange model

DD^*

$\begin{aligned} H_a^{(Q)} &= \frac{1+\not \nu}{2} \left[P_a^{*\mu} \gamma_\mu - P_a \gamma_5 \right] \\ \bar{H}_a^{(Q)} &\equiv \gamma_0 H^{(Q)\dagger} \gamma_0 = \left[P_a^{*\dagger\mu} \gamma_\mu + P_a^{\dagger} \gamma_5 \right] \frac{1+\not \nu}{2} \\ P &= \left(D^0, D^+, D_s^+ \right) \& P^* = \left(D^{*0}, D^{*+}, D_s^{*+} \right) \end{aligned}$

$$\mathcal{L}_{MH^{(Q)}H^{(Q)}} = ig \operatorname{Tr} \left[H_b^{(Q)} \gamma_\mu \gamma_5 A_{ba}^\mu \bar{H}_a^{(Q)} \right]$$
$$\mathcal{L}_{VH^{(Q)}H^{(Q)}} = i\beta \operatorname{Tr} \left[H_b^{(Q)} v_\mu \left(V_{ba}^\mu - \rho_{ba}^\mu \right) \bar{H}_a^{(Q)} \right]$$
$$+ i\lambda \operatorname{Tr} \left[H_b^{(Q)} \sigma_{\mu\nu} F^{\mu\nu}(\rho)_{ba} \bar{H}_a^{(Q)} \right]$$

$$D\overline{D}^*$$

$$\begin{split} H_{a}^{(\bar{Q})} &\equiv C \left(\mathcal{C} H_{a}^{(Q)} \mathcal{C}^{-1} \right)^{T} C^{-1} = \left[P_{a\mu}^{(\bar{Q})*} \gamma^{\mu} - P_{a}^{(\bar{Q})} \gamma_{5} \right] \frac{1 - \not}{2} \\ \bar{H}_{a}^{(\bar{Q})} &\equiv \gamma_{0} H_{a}^{(\bar{Q})\dagger} \gamma_{0} = \frac{1 - \not}{2} \left[P_{a\mu}^{(\bar{Q})*\dagger} \gamma^{\mu} + P_{a}^{(\bar{Q})\dagger} \gamma_{5} \right] \\ \tilde{P} &= \left(\bar{D}^{0}, D^{-}, D_{s}^{-} \right) \& \tilde{P}^{*} = \left(\bar{D}^{*0}, D^{*-}, D_{s}^{*-} \right) \end{split}$$

$$\begin{aligned} \mathcal{L}_{MH^{(\bar{Q})}H^{(\bar{Q})}} =& ig \operatorname{Tr} \left[\bar{H}_{a}^{(\bar{Q})} \gamma_{\mu} \gamma_{5} A_{ab}^{\mu} H_{b}^{(\bar{Q})} \right] \\ \mathcal{L}_{VH^{(\bar{Q})}H^{(\bar{Q})}} =& -i\beta \operatorname{Tr} \left[\bar{H}_{a}^{(\bar{Q})} v_{\mu} \left(V_{ab}^{\mu} - \rho_{ab}^{\mu} \right) H_{b}^{(\bar{Q})} \right] \\ &+ i\lambda \operatorname{Tr} \left[\bar{H}_{a}^{(\bar{Q})} \sigma_{\mu\nu} F_{ab}^{\prime\mu\nu}(\rho) H_{b}^{(\bar{Q})} \right] \end{aligned}$$

- g = 0.57 is determined by the strong decays $D^* \to D\pi$.
- undetermined $\lambda \& \beta$.

 $pp \rightarrow D^0(p_{D_1})D^0(p_{D_2})\pi^+(p_{\pi})X, X$ denotes all the other produced particles

The amplitude of the process

$$\begin{split} i\mathcal{M}_{pp\to DD\pi X} &= \mathcal{A}_{pp\to DD^* X}^{\mu} \left\{ g_{\mu\alpha} - \frac{i}{(2\pi)^4} \int d^4 q_{D^*} G_{D^* \,\mu\nu}(q_{D^*}) G_D(p_{D_1} + p_{D_2} + p_{\pi} - q_{D^*}) T_{\alpha}^{\nu}(q_{D^*}, p_{D_1} + p_{\pi}) \right\} \\ &\times G_{D^*}^{\alpha\beta}(p_{D_2} + p_{\pi})(g \, p_{\pi,\beta}) + (p_{D_1} \to p_{D_2}), \end{split}$$

The iso-vector and iso-scalar assignment for the \mathcal{A} with the production amplitudes satisfying

$$\mathcal{A}^{\mu}_{pp \to D^+ D^{0*}X} = \pm \mathcal{A}^{\mu}_{pp \to D^0 D^{*+}X}$$

> We can only find a satisfactory fit to the experimental data only in the iso-scalar case.

T-matrix

The T-matrix can be solved from the Lippmann-Schwinger equation

$$T(\vec{k}_{D^*}, \vec{k}_{D^*}'; E) = \mathcal{V}(\vec{k}_{D^*}, \vec{k}_{D^*}'; E) + \int d\vec{q} \frac{\mathcal{V}(\vec{k}_{D^*}, \vec{q}; E)T(\vec{q}, \vec{k}_{D^*}'; E)}{E - \sqrt{m_D^2 + q^2} - \sqrt{m_{D^*}^2 + q^2} + i\epsilon}$$

The effective potential is obtained with light-meson exchange potentials

$$\mathcal{V} = \left(V_{\pi} + V_{\rho/\omega}^{t} + V_{\rho/\omega}^{u}\right) \left(\frac{\Lambda^{2}}{\Lambda^{2} + p_{f}^{2}}\right)^{2} \left(\frac{\Lambda^{2}}{\Lambda^{2} + p_{i}^{2}}\right)^{2}$$

with

$$V_{\pi} = \frac{g^2}{f_{\pi}^2} \frac{(q \cdot \epsilon_{\lambda})(q \cdot \epsilon_{\lambda'}^{\dagger})}{q^2 - m_{\pi}^2},$$

$$\mathcal{V}_{\rho/\omega}^u = -2\lambda^2 g_V^2 \frac{(\epsilon_{\lambda'}^{\dagger} \cdot q)(\epsilon_{\lambda} \cdot q) - q^2(\epsilon_{\lambda} \cdot \epsilon_{\lambda'}^{\dagger})}{q^2 - m_{\rho/\omega}^2},$$

$$V_{\rho/\omega}^t = \frac{\beta^2 g_V^2}{2} \frac{(\epsilon_{\lambda} \cdot \epsilon_{\lambda'}^{\dagger})}{q^2 - m_{\rho/\omega}^2}.$$

Fitting result

Fitting result

• Parameters consistent with those in one-boson-exchange model

Parameters	$\Lambda(\text{fixed})$	λ	β
Best fit	0.8 GeV	0.890 ± 0.20	0.810 ± 0.11
Best fit	1 GeV	0.683 ± 0.025	0.687 ± 0.017
Best fit	1.2 GeV	0.587 ± 0.027	0.550 ± 0.027
Ref. [1]	1.17 GeV	0.56	0.9

[1] Cheng, et al. Phys. Rev. D 106,016012 (2022).

The radius and momentum will rotate with an angle θ :

With the varying θ :

- the scattering states will rotate with 2θ
- while the bound and resonant states will stay stable

Results with $\Lambda = 0.8 \text{ GeV}$

• Only one pole appears—bound states $m_{T_{cc}}$ =3874.7 MeV, $\Delta E = -387.7$ keV $\Gamma_{T_{cc}} = 67.3 \text{ keV}$ • $\sqrt{\langle r^2 \rangle} = 4.8 \, fm$ $[I=0] = \frac{1}{\sqrt{2}}(D^{*+}D^0 - D^{*0}D^+)$ 95.8%, $DD^*(I = 0)$ • 70.1% $D^{*+}D^{0}$, 30% $D^{+}D^{*0}$ $[I=1] = \frac{1}{\sqrt{2}}(D^{*+}D^{0} + D^{*0}D^{+})$ $4.2\% DD^*(I = 1)$ Mass differences of $D^{*+}D^0$ and D^+D^{*0} 0.5 D^0D^* $D^{*0}D^{-1}$ $^{-1}$ 0.4 -2 $r|\psi_{T_{cc}}(r)|[fm^{-1/2}]$ Imag.(E) [MeV] -3 -4 -5 D^0D^{*+} , $\theta = 15^\circ$ -60.1 $D^{*0}D^+, \theta = 15^{\circ}$ $D^{0}D^{*+}$, $\theta = 25$ -7 $D^{*0}D^+$, $\theta = 25$ 0.0 -10 20 30 0 50 40 60 -8 r[fm] 5 $^{-1}$ 0 1 2 3 4 6 Real(E) [MeV]

$\overline{\Lambda (\text{GeV})}$	BE (keV)	Γ (keV)	$\sqrt{\langle r^2 angle}$	I = 0	I = 1	$P(D^0D^{*+})$	$P(D^+D^{*0})$	$\frac{\operatorname{Res}(D^0D^{*+})}{\operatorname{Res}(D^+D^{*0})}$
0.8	-387.7	67.3	$4.8~{ m fm}$	95.8%	4.2%	70.0%	30.0%	-1.063 + 0.001I
1.0	-393.0	70.4	$4.7~\mathrm{fm}$	95.8%	4.2%	70.0%	30.0%	-1.055 + 0.001I
1.2	-391.6	72.7	$4.7~\mathrm{fm}$	95.7%	4.3%	70.3%	29.7%	-1.052 + 0.001I

- The conclusion remains the same using the three different cutoff values.
- The binding energy of the bound state is around $\Delta E \sim -390$ keV, which is consistent

with that of the measurement $(\Delta E_{exp} = -360(40) \text{keV})$. LHCb, Nature Commun. 13 (2022) 1, 3351

Direct application to $D\overline{D}^*$: *X*(3872)

- Without the $c\bar{c}$ core, there are no bound states.
- $V'_{D\bar{D}^*} = x * V_{D\bar{D}^*}$

 $D\overline{D}^*$ interaction is attractive but not strong enough to form a bound state.

Inclusion of $c\overline{c}$ core

- The $D\overline{D}^*$ system with quantum number $I(J^{PC}) = 0(1^{++})$ can couple with the $\chi_{c1}(2P)$.
- The coupled channel effect between them can be described by the quark-pair-creation model:

$$g_{D\bar{D}^*,c\bar{c}}(\left|\vec{k}_{D\bar{D}^*}\right|) = \gamma I_{D\bar{D}^*,c\bar{c}}(\left|\vec{k}_{D\bar{D}^*}\right|)$$

where $\vec{k}_{D\bar{D}^*}$ is the relative momentum in the $D\bar{D}^*$ channel.

 $I_{D\bar{D}^*,cc}(|\vec{k}_{D\bar{D}^*}|)$ is the overlap of the meson wave functions \leftarrow GI quark model

• γ is determined to reproduce the $\psi(3770)$:

$$\gamma = 4.69$$

• The the X(3872) can be obtained:

X(3872)	BE (keV)	$\Gamma ~({\rm keV})$	$\sqrt{\langle r^2 angle}$	I = 0	I = 1	$P(D^0ar{D}^{*0})$	$P(D^+D^{*-})$	$P(car{c})$
	-80.4	32.5	$11.2 {\rm ~fm}$	71.9%	28.1%	94.0%	4.8%	1.2%

- Long tails for the radius distribution.
- X(3872) has a even longer tails than T_{cc}
- $\sqrt{r} < 2 \text{ fm}, c\overline{c} + \overline{D}D^*$ are important.
- $\sqrt{r} < 0.5$ fm, $c\bar{c}$ core dominates.
- $\sqrt{D\overline{D}^*}$ plays the dominant role in the longdistance region, which contributes to $\sqrt{\langle r^2 \rangle}$.

Direct application to $D\overline{D}^*$: Candidate for X(3940)?

• Besides the X(3872), we also find a signal of the resonant state $\chi_{c1}(2P)$ with

 $M = 3957.9 \text{MeV}, \Gamma = 16.7 \text{MeV},$

which might be related to the X(3940) observed in the $D\overline{D}^*$ channel.

- A new framework connecting quark model and lattice QCD is constructed to study the components and pole masses of the physical $D_s(2317)$, $D_s(2460)$, $D_s(2536)$ and $D_s(2573)$.
- Short-range interactions and structures of X(3872) should be studied by considered the $c\bar{c}$ core.

Thank you !

• The π interactions for $DD^*(I = 0, T_{cc})$ are the same with those

of $D\overline{D}^{*}(I = 0, C = +)(X(3872))$

• The long-range meson-meson interactions for T_{cc} , X(3872) are related to each other.