

Low-Energy-Constant relations in baryon ChPT from chiral quark model

刘 言 锐 (山东大学物理学院,济南)

Based on:

J. Jiang, S.Z. Jiang, S.Y. Li, Y.R. Liu, Z.G. Si, H.Q. Wang, Phys. Rev. D 106, 054023 (2022) J. Jiang, S.Z. Jiang, S.Y. Li, Y.R. Liu, Z.G. Si, H.Q. Wang, Eur. Phys. J. C 83, 296 (2023)

> 河南・开封 2023年10月30日

2. LEC relations in baryon ChPT to $\mathcal{O}(p^3)$

3. The case including $\Delta(1232)$

4. Summary

• Various systems and constructed chiral Lagrangians:

Pseudoscalar mesons $q\bar{q}$: $\mathcal{O}(p^8)$

Light quark baryons $qqq: \mathcal{O}(p^4)$ $\begin{cases}
SU(2) : \mathcal{L}_{\pi NN} \\
SU(3) : \mathcal{L}_{MBB} \\
SU(2) : \mathcal{L}_{\pi \Delta \Delta} , \mathcal{L}_{\pi N\Delta} \\
SU(3) : \mathcal{L}_{MTT} , \mathcal{L}_{MBT}
\end{cases}$

B: octet T: decuplet

Heavy quark hadrons $Q\bar{q}$, Qqq, QQq: $\mathcal{O}(p^4)$

• Increasing number of LECs in the SU(3) light hadron case

Pseudoscalar mesons:

Light quark baryons

 \mathcal{L}_{MBB} : 2, 16, 78, 540

 \mathcal{L}_{MTT} : 1, 13, 55, 548 \mathcal{L}_{MBT} : 1, 5, 67, 611 S.Z. Jiang et al., PRD 95, 014012 (2017)

S.Z. Jiang et al., PRD 97, 054031 (2018)

- LEC \rightarrow hadron masses, hadron-hadron scattering, phase shifts, ...
- Difficult to determine LECs from QCD
- Fitting experimental data, lattice QCD, resonance saturation, quark model, ...
- Here: focus on LEC relations using chiral quark model (χQM)
- Fields between Λ_{QCD} and $\Lambda_{\chi SB}$ in χQM : quarks, gluons, and goldstone bosons [A.Manohar, H.Georgi, Nucl.Phys.B 234, 189 (1984)]

$$\mathcal{L}_{\chi QM} = \sum_{q=u,d} \bar{\psi}_q (iD\!\!/ + V) \psi_q + g_A^q \bar{\psi}_q A \gamma_5 \psi_q + \frac{1}{4} F_\pi^2 \langle u^\mu u_\mu \rangle - \frac{1}{4} \langle \mathcal{G}_{\mu\nu} \mathcal{G}^{\mu\nu} \rangle + \cdots$$

$$A_{\mu} = \frac{i}{2} (u^{\dagger} \partial_{\mu} u - u \partial_{\mu} u^{\dagger}), \quad V_{\mu} = \frac{1}{2} (u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger}), \quad u = exp(\frac{i\phi}{2F_{\pi}}), \quad \phi = \sum_{i=1}^{3} \tau_{i} \pi_{i} \text{ or } \sum_{i=1}^{8} \lambda_{i} \pi_{i}$$

黄飞: PhD

 $\mathcal{O}(p^1)$ 阶 χ PT 和 χ QM 的拉氏量

J. Gasser, Nucl. Phys. B, 307, 779 (1988)

- Extend relation determination to higher chiral orders
- Purpose: constrain SU(3) from SU(2)
- Treating χ QM as quark-level descriptions of ChPT

手征夸克模型方法 ⇒ 不同体系拉氏量低能常数间关系

• Final: LEC relations between hadron-level Lagrangians

$$\mathcal{O}(p^1) \Rightarrow \mathcal{O}(p^3)$$

- Need high-order Lagrangians in χ QM (bridging role)
- Results of QM symmetry: SU(2), SU(3), and different representations for quarks and baryons
- A systematic approach to get LEC relations
- Grouping is needed according to operator structures

	$\mathcal{O}(p^2)$ 阶 χ PT 和 χ QM 的拉氏量										
N. Fe J.A.	N. Fettes, U.G. Meissner, M. Mojzis, Annl. Phys. 283, 273 (2000) J.A. Oller, M. Verbeni, J. Prades, JHEP 09, 079 (2006)										
$SU(2)_{\chi PT/\chi QM}$ $SU(3)_{\chi QM}$ $SU(3)_{\chi PT}$											
	$\longrightarrow \alpha_i/\beta_i$		Ci		d_i		d_i				
1	$ar{\psi}\langle$ u^{\mu}u_{\mu} angle\psi	1	$ar{\Psi}\langle u^{\mu}u_{\mu} angle \Psi$	1	$\langle ar{B} u^\mu u_\mu B angle$	3	$\langle ar{B}Bu^{\mu}u_{\mu} angle$				
		2	$ar{\Psi} u^\mu u_\mu \Psi$	2	$\langle \bar{B} u^{\mu} B u_{\mu} \rangle$	4	$\langle ar{B}B angle \langle u^{\mu}u_{\mu} angle$				
2	$iar{\psi}$ u $^{\mu}$ u $^{ u}\sigma_{\mu u}\psi$	3	$i \bar{\Psi} u^{\mu} u^{ u} \sigma_{\mu u} \Psi$	5	$i\langle \bar{B}u^{\mu}u^{ u}\sigma_{\mu u}B\rangle$	7	$i\langle \bar{B}u^{\mu}\rangle\langle u^{\nu}\sigma_{\mu\nu}B\rangle$				
			с.	6	$i\langlear{B}\sigma_{\mu u}Bu^{\mu}u^{ u} angle$						
3	$ar{\psi}\langle u^{\mu}u^{ u} angle D_{\mu u}\psi$	4	$ar{\Psi}\langle u^{\mu}u^{ u} angle D_{\mu u}\Psi$	8	$\langle \bar{B} u^{\mu} u^{ u} D_{\mu u} B angle$	10	$\langle \bar{B} D_{\mu u} B u^{\mu} u^{ u} angle$				
		5	$ar{\Psi} u^\mu u^ u D_{\mu u} \Psi$	9	$\langle ar{B} u^\mu D_{\mu u} B u^ u angle$	11	$\langle \bar{B} D_{\mu u} B angle \langle u^{\mu} u^{ u} angle$				
4	$ar{\psi} f^{\mu u}_+ \sigma_{\mu u} \psi$	6	$ar{\Psi} f^{\mu u}_+ \sigma_{\mu u} \Psi$	12	$\langle \bar{B} f^{\mu u}_+ \sigma_{\mu u} B \rangle$	13	$\langle \bar{B}\sigma_{\mu u}Bf_{+}^{\mu u} angle$				
5	$\bar{\psi}\langle f_+^{\mu\nu}\rangle\sigma_{\mu\nu}\psi\to 0$										
6	$ar{\psi} ilde{\chi}_+\psi$	7	$ar{\Psi} ilde{\chi}_+ \Psi$	14	$\langle ar{B} ilde{\chi}_+ B angle$	16	$\langle ar{B}B angle \langle \chi_+ angle$				
7	$ar{\psi}\langle\chi_+ angle\psi$	8	$\bar{\Psi}\langle\chi_+ angle\Psi$	15	$\langle ar{B}B ilde{\chi}_+ angle$		10				

$O(p^3)$ 阶 χ PT 和 χ QM 的拉氏量第 1 到第 4 组

N. Fettes, U.G. Meissner, M. Mojzis, Annl. Phys. 283, 273 (2000)
J.A. Oller, M. Verbeni, J. Prades, JHEP 09, 079 (2006)
Jiang et al., Phys. Rev. D, 106, 054023 (2022)

	$SU(2)_{\chi PT/\chi QM}$	$SU(3)_{\chi QM}$		5	$SU(3)_{\chi PT}$				
	$\longrightarrow \alpha_i/\beta_i$		Ci		d_i		d_i		
1	$ar{\psi}\langle u^{\mu}u_{\mu} angle u^{ u}\gamma_{ u}\gamma_{5}\psi$	1	$ar{\Psi}\langle u^{\mu}u_{\mu} angle u^{ u}\gamma_{ u}\gamma_{5}\Psi$	1	$[\langle \bar{B} u^{\mu} u_{\mu} u^{ u} \gamma_{ u} \gamma_{5} B angle]_{+}$	7	$\langle ar{B} \gamma_ u \gamma_5 B u^\mu u^ u u_\mu angle$		
2	$ar{\psi}\langle u^{\mu}u^{ u} angle u_{\mu}\gamma_{ u}\gamma_{5}\psi$	2	$ar{\Psi}\langle u^{\mu}u^{ u} angle u_{\mu}\gamma_{ u}\gamma_{5}\Psi$	2	$\langle ar{B} u^\mu u^ u u_\mu \gamma_ u \gamma_5 B angle$	8	$[\langle \bar{B} \gamma_{ u} \gamma_5 B u^{ u} u^{\mu} u_{\mu} angle]_+$		
		3	$ar{\Psi}\langle u^{\mu}u_{\mu}u^{ u} angle \gamma_{ u}\gamma_{5}\Psi$	3	$\langle ar{B} u^\mu u_\mu \gamma_ u \gamma_5 B u^ u angle$	9	$\langle \bar{B}\gamma_{ u}\gamma_{5}Bu^{ u} angle \langle u^{\mu}u_{\mu} angle$		
		4	$[ar{\Psi} u^\mu u_\mu u^ u \gamma_ u \gamma_5 \Psi]_+$	4	$[\langle \bar{B} u^{ u} u^{\mu} \gamma_{ u} \gamma_5 B u_{\mu} \rangle]_+$	10	$\langle \bar{B} \gamma_{ u} \gamma_5 B \rangle \langle u^{ u} u^{\mu} u_{\mu} \rangle$		
				5	$\langle ar{B} u^ u \gamma_ u \gamma_5 B u^\mu u_\mu angle$	11	$[\langle \bar{B} u^{\mu} u_{\mu} \rangle \langle u^{ u} \gamma_{ u} \gamma_{5} B \rangle]_{+}$		
				6	$[\langle \bar{B} u_{\mu} \gamma_{ u} \gamma_5 B u^{\mu} u^{ u} angle]_+$				
3	$\varepsilon_{\mu\nu\lambda ho}\bar{\psi}\langle u^{\mu}u^{ u}u^{\lambda} angle D^{ ho}\psi$	5	$\epsilon_{\mu u\lambda ho}ar{\Psi}\langle u^{\mu}u^{ u}u^{\lambda} angle D^{ ho}\Psi$	12	$arepsilon_{\mu u\lambda ho}\langlear{B}u^{\mu}u^{ u}u^{\lambda}D^{ ho}B angle$	15	$arepsilon_{\mu u\lambda ho}\langlear{B}D^{ ho}Bu^{\mu}u^{ u}u^{\lambda} angle$		
		6	$\epsilon_{\mu u\lambda ho}ar{\Psi}u^{\mu}u^{ u}u^{\lambda}D^{ ho}\Psi$	13	$arepsilon_{\mu u\lambda ho}\langlear{B}u^{\mu}u^{ u}D^{ ho}Bu^{\lambda} angle$	16	$arepsilon_{\mu u\lambda ho}\langlear{B}D^{ ho}B angle\langle u^{\mu}u^{ u}u^{\lambda} angle$		
				14	$arepsilon_{\mu u\lambda ho}\langlear{B}u^{\lambda}D^{ ho}Bu^{\mu}u^{ u} angle$				
4	$\bar{\psi}\langle u^{\mu}u^{ u} angle u^{\lambda}\gamma_{\mu}\gamma_{5}D_{ u\lambda}\psi$	7	$ar{\Psi}\langle u^{\mu}u^{ u} angle u^{\lambda}\gamma_{\mu}\gamma_{5}D_{ u\lambda}\Psi$	17	$[\langle \bar{B} u^{\mu} u^{ u} u^{\lambda} \gamma_{\mu} \gamma_5 D_{ u\lambda} B \rangle]_+$	23	$[\langle \bar{B} \gamma_{\mu} \gamma_5 D_{\nu\lambda} B u^{\mu} u^{ u} u^{\lambda} \rangle]_+$		
5	$ar{\psi}\langle u^{\mu}u^{ u} angle u^{\lambda}\gamma_{\lambda}\gamma_{5}\mathcal{D}_{\mu u}\psi$	8	$ar{\Psi}\langle u^{ u}u^{\lambda} angle u^{\mu}\gamma_{\mu}\gamma_{5}D_{ u\lambda}\Psi$	18	$\langle \bar{B} u^{ u} u^{\mu} u^{\lambda} \gamma_{\mu} \gamma_5 D_{ u\lambda} B angle$	24	$\langle ar{B} \gamma_\mu \gamma_5 D_{ u\lambda} B u^ u^\mu u^\lambda angle$		
		9	$ar{\Psi}\langle u^{\mu}u^{ u}u^{\lambda} angle \gamma_{\mu}\gamma_{5}\mathcal{D}_{ u\lambda}\Psi$	19	$\langle ar{B} u^ u u^\lambda \gamma_\mu \gamma_5 D_{ u\lambda} B u^\mu angle$	25	$\langle ar{B} \gamma_\mu \gamma_5 D_{ u\lambda} B angle \langle u^\mu u^ u u^\lambda angle$		
		10	$[\bar{\Psi} u^{\mu} u^{ u} u^{\lambda} \gamma_{\mu} \gamma_5 D_{ u\lambda} \Psi]_+$	20	$[\langle \bar{B} u^{\mu} u^{ u} \gamma_{\mu} \gamma_5 D_{ u\lambda} B u^{\lambda} \rangle]_+$	26	$\langle \bar{B} \gamma_{\mu} \gamma_5 D_{ u\lambda} B u^{\mu} angle \langle u^{ u} u^{\lambda} angle$		
				21	$[\langle \bar{B} u^{\lambda} \gamma_{\mu} \gamma_5 D_{\nu\lambda} B u^{\mu} u^{ u} \rangle]_+$	27	$[\langle \bar{B} u^{ u} u^{\lambda} \rangle \langle u^{\mu} \gamma_{\mu} \gamma_5 D_{\nu\lambda} B \rangle]_+$		
				22	$\langle \bar{B} u^{\mu} \gamma_{\mu} \gamma_5 D_{ u\lambda} B u^{ u} u^{\lambda} angle$				
6	$[ar{\psi} u_\mu h^{\mu u} D_ u \psi]_+$	11	$[ar{\Psi} u_\mu h^{\mu u} D_ u \Psi]_+$	28	$[\langle \bar{B} u_\mu h^{\mu u} D_ u B angle]_+$	30	$[\langle ar{B} h^{\mu u} angle \langle u_\mu D_ u B angle]_+$		
			a server de la constante de la	29	$[\langle \bar{B} D_{ u} B u_{\mu} h^{\mu u} angle]_+$		11		

$O(p^3)$ 阶 χ PT 和 χ QM 的拉氏量第 5 到第 11 组

N. Fettes, U.G. Meissner, M. Mojzis, Annl. Phys. 283, 273 (2000)
J.A. Oller, M. Verbeni, J. Prades, JHEP 09, 079 (2006)
Jiang et al., Phys. Rev. D, 106, 054023 (2022)

54 	$SU(2)_{\chi PT/\chi QM}$		$SU(3)_{\chi QM}$		$SU(3)_{\chi PT}$				
10	$\longrightarrow \alpha_i/\beta_i$		Ci		d_i		d_i		
7	$[ar{\psi} u^\mu h^{ u\lambda} D_{\mu u\lambda} \psi]_+$	12	$[\bar{\Psi} u^{\mu} h^{ u\lambda} D_{\mu u\lambda} \Psi]_+$	31	$[\langle \bar{B} u^{\mu} h^{ u\lambda} D_{\mu u\lambda} B \rangle]_+$	33	$[\langle \bar{B}h^{\mu u} angle\langle u^{\lambda}D_{\mu u\lambda}B angle]_{+}$		
				32	$[\langle \bar{B} D_{\mu\nu\lambda} B u^{\mu} h^{\nu\lambda} \rangle]_+$				
8	$iar{\psi}\langle u^{\mu}h^{ u\lambda} angle\sigma_{\mu u} D_{\lambda}\psi$	13	$iar{\Psi}\langle u^{\mu}h^{ u\lambda} angle\sigma_{\mu u} D_{\lambda}\Psi$	34	$[i\langle \bar{B}u^{\mu}h^{ u\lambda}\sigma_{\mu u}D_{\lambda}B angle]_{+}$	36	$[i\langle \bar{B}\sigma_{\mu u}D_{\lambda}Bu^{\mu}h^{ u\lambda} angle]_{+}$		
		14	$[iar{\Psi} u^\mu h^{ u\lambda} \sigma_{\mu u} D_\lambda \Psi]_+$	35	$i \langle ar{B} u^\mu \sigma_{\mu u} D_\lambda B h^{ u\lambda} angle$	37	$i \langle ar{B} \sigma_{\mu u} D_\lambda B angle \langle u^\mu h^{ u\lambda} angle$		
9	$[iar{\psi}f_+^{\mu u}u_\mu\gamma_ u\gamma_5\psi]_+$	15	$[iar{\Psi}f_+^{\mu u}u_\mu\gamma_ u\gamma_5\Psi]_+$	38	$[i\langle \bar{B}f_{+}^{\mu u}u_{\mu}\gamma_{ u}\gamma_{5}B angle]_{+}$	40	$[i\langle \bar{B}u_{\mu}\rangle\langle f_{+}^{\mu u}\gamma_{\nu}\gamma_{5}B angle]_{+}$		
				39	$[i\langle \bar{B}\gamma_{ u}\gamma_{5}Bf_{+}^{\mu u}u_{\mu} angle]_{+}$				
10	$i\varepsilon_{\mu\nu\lambda\rho}\bar{\psi}\langle f_{+}^{\mu\nu}\rangle u^{\lambda}D^{\rho}\psi \to 0$	16	$i\epsilon_{\mu u\lambda ho}ar{\Psi}\langle f_{+}^{\mu u}u^{\lambda} angle D^{ ho}\Psi$	41	$[i\varepsilon_{\mu u\lambda ho}\langlear{B}f_{+}^{\mu u}u^{\lambda}D^{ ho}B angle]_{+}$	44	$[iarepsilon_{\mu u\lambda ho}\langlear{B}D^{ ho}Bf_{+}^{\mu u}u^{\lambda} angle]_{+}$		
11	$iarepsilon_{\mu u\lambda ho}ar\psi\langle f_+^{\mu u}u^\lambda angle {\cal D}^ ho\psi$	17	$[i\epsilon_{\mu u\lambda ho}ar{\Psi}f_+^{\mu u}u^\lambda D_ ho\Psi]_+$	42	$iarepsilon_{\mu u\lambda ho}\langlear{B}f_{+}^{\mu u}D^{ ho}Bu^{\lambda} angle$	45	$iarepsilon_{\mu u\lambda ho}\langlear{B}D^{ ho}B angle\langle f_{+}^{\mu u}u^{\lambda} angle$		
				43	$iarepsilon_{\mu u\lambda ho}\langlear{B}u^{\lambda}D^{ ho}Bf_{+}^{\mu u} angle$				
12	$iar{\psi} abla_\mu f_+^{\mu u} {\cal D}_ u\psi$	18	$iar{\Psi} abla_{\mu}f_{+}^{\mu u}D_{ u}\Psi$	46	$i \langle ar{B} abla_\mu f_+^{\mu u} D_ u B angle$	47	$i\langle \bar{B}D_{ u}B abla_{\mu}f^{\mu u}_{+} angle$		
13	$i\bar{\psi}\langle abla_{\mu}f_{+}^{\mu u} angle D_{ u}\psi ightarrow 0$								
14	$[iar{\psi}f_+^{\mu u}u^\lambda\gamma_\mu\gamma_5 D_{ u\lambda}\psi]_+$	19	$[i\bar{\Psi}f_{+}^{\mu\nu}u^{\lambda}\gamma_{\mu}\gamma_{5}D_{\nu\lambda}\Psi]_{+}$	48	$[i\langle \bar{B}f_{+}^{\mu\nu}u^{\lambda}\gamma_{\mu}\gamma_{5}D_{\nu\lambda}B\rangle]_{+}$	50	$[i\langle \bar{B}u^{\lambda}\rangle\langle f_{+}^{\mu u}\gamma_{\mu}\gamma_{5}D_{\nu\lambda}B angle]_{+}$		
				49	$[i\langle \bar{B}\gamma_{\mu}\gamma_{5}D_{ u\lambda}Bf_{+}^{\mu u}u^{\lambda} angle]_{+}$				
15	$[ar{\psi} u_\mu f^{\mu u} \mathcal{D}_ u \psi]_+$	20	$[ar{\Psi} u_\mu f^{\mu u} D_ u \Psi]_+$	51	$[\langle \bar{B} u_{\mu} f_{-}^{\mu u} D_{\nu} B \rangle]_{+}$	53	$[\langle \bar{B} f_{-}^{\mu u} \rangle \langle u_{\mu} D_{\nu} B \rangle]_{+}$		
	rozzet unikon. zeznenia zezneti in		an and an and an	52	$[\langle ar{B} D_ u B u_\mu f^{\mu u} angle]_+$		12		

$O(p^3)$ 阶 χ PT 和 χ QM 的拉氏量第 12 到第 16 组

N. Fettes, U.G. Meissner, M. Mojzis, Annl. Phys. 283, 273 (2000) J.A. Oller, M. Verbeni, J. Prades, JHEP 09, 079 (2006) Jiang et al., Phys. Rev. D, 106, 054023 (2022)

54. 	$SU(2)_{\chi PT/\chi QM}$		$SU(3)_{\chi QM}$		$SU(3)_{\chi PT}$				
20	$\longrightarrow \alpha_i/\beta_i$		Ci		d_i		d_i		
16	$iar{\psi}\langle u^{\mu}f_{-}^{ u\lambda} angle\sigma_{\mu u}D_{\lambda}\psi$	21	$i\bar{\Psi}\langle u^{\mu}f_{-}^{ u\lambda} angle\sigma_{\mu u}D_{\lambda}\Psi$	54	$[i\langle \bar{B}u^{\mu}f_{-}^{\nu\lambda}\sigma_{\mu\nu}D_{\lambda}B\rangle]_{+}$	59	$i\langle \bar{B}u^{\mu}\sigma_{ u\lambda}D_{\mu}Bf_{-}^{ u\lambda} angle$		
17	$iar{\psi}\langle u^{\mu}f_{-}^{ u\lambda} angle\sigma_{ u\lambda}D_{\mu}\psi$	22	$i \bar{\Psi} \langle u^{\mu} f_{-}^{ u\lambda} angle \sigma_{ u\lambda} D_{\mu} \Psi$	55	$[i\langle \bar{B}u^{\mu}f_{-}^{\nu\lambda}\sigma_{\nu\lambda}D_{\mu}B\rangle]_{+}$	60	$[i\langle \bar{B}\sigma_{\mu\nu}D_{\lambda}Bu^{\mu}f_{-}^{\nu\lambda} angle]_{+}$		
		23	$[i\bar{\Psi}u^{\mu}f_{-}^{\nu\lambda}\sigma_{\mu\nu}D_{\lambda}\Psi]_{+}$	56	$i\langle \bar{B}f_{-}^{ u\lambda}\sigma_{ u\lambda}D_{\mu}Bu^{\mu} angle$	61	$[i\langle \bar{B}\sigma_{\nu\lambda}D_{\mu}Bu^{\mu}f_{-}^{\nu\lambda} angle]_{+}$		
		24	$[i\bar{\Psi}u^{\mu}f_{-}^{\nu\lambda}\sigma_{\nu\lambda}D_{\mu}\Psi]_{+}$	57	$i\langle \bar{B}f_{-}^{ u\lambda}\sigma_{\mu u}D_{\lambda}Bu^{\mu} angle$	62	$i\langle \bar{B}\sigma_{\mu\nu}D_{\lambda}B\rangle\langle u^{\mu}f_{-}^{\nu\lambda}\rangle$		
				58	$i\langle \bar{B}u^{\mu}\sigma_{\mu u}D_{\lambda}Bf_{-}^{ u\lambda} angle$	63	$i\langle \bar{B}\sigma_{\nu\lambda}D_{\mu}B\rangle\langle u^{\mu}f_{-}^{\nu\lambda} angle$		
18	$ar{\psi} abla_{\mu}f_{-}^{\mu u}\gamma_{ u}\gamma_{5}\psi$	25	$ar{\Psi} abla_{\mu}f_{-}^{\mu u}\gamma_{ u}\gamma_{5}\Psi$	64	$\langle ar{B} abla_{\mu} f_{-}^{\mu u} \gamma_{ u} \gamma_{5} B angle$	65	$\langle ar{B} \gamma_\mu \gamma_5 B abla_ u f^{\mu u} angle$		
19	$ar{\psi}\langle u^{\mu} ilde{\chi}_{+} angle \gamma_{\mu}\gamma_{5}\psi$	26	$ar{\Psi}\langle u^{\mu} ilde{\chi}_{+} angle \gamma_{\mu}\gamma_{5}\Psi$	66	$[\langle \bar{B} u^{\mu} \tilde{\chi}_{+} \gamma_{\mu} \gamma_{5} B angle]_{+}$	70	$\langle \bar{B} \gamma_{\mu} \gamma_5 B \rangle \langle u^{\mu} \tilde{\chi}_+ angle$		
20	$ar{\psi}\langle\chi_+ angle$ $u^\mu\gamma_\mu\gamma_5\psi$	27	$ar{\Psi}\langle\chi_+ angle$ u $^\mu\gamma_\mu\gamma_5\Psi$	67	$\langle ar{B} ilde{\chi}_+ \gamma_\mu \gamma_5 B u^\mu angle$	71	$\langle ar{B} u^\mu \gamma_\mu \gamma_5 B angle \langle \chi_+ angle$		
		28	$[ar{\Psi} u^\mu ilde{\chi}_+ \gamma_\mu \gamma_5 \Psi]_+$	68	$\langle ar{B} u^\mu \gamma_\mu \gamma_5 B ilde{\chi}_+ angle$	72	$\langle \bar{B} \gamma_{\mu} \gamma_5 B u^{\mu} angle \langle \chi_+ angle$		
				69	$[\langle ar{B} \gamma_{\mu} \gamma_5 {\cal B} u^{\mu} ilde{\chi}_+ angle]_+$				
21	$iar{\psi} ilde{\chi}^{\mu}_{-}\gamma_{\mu}\gamma_{5}\psi$	29	$iar{\Psi} ilde{\chi}^{\mu}_{-}\gamma_{\mu}\gamma_{5}\Psi$	73	$i \langle ar{B} ilde{\chi}_{-}^{\mu} \gamma_{\mu} \gamma_{5} B angle$	75	$i \langle ar{B} \gamma_\mu \gamma_5 B angle \langle \chi^\mu angle$		
22	$iar{\psi}\langle\chi^{\mu}_{-} angle\gamma_{\mu}\gamma_{5}\psi$	30	$iar{\Psi}\langle\chi^{\mu}_{-} angle\gamma_{\mu}\gamma_{5}\Psi$	74	$i \langle ar{B} \gamma_\mu \gamma_5 B ilde{\chi}^\mu angle$				
23	$[iar{\psi} u^\mu ilde{\chi} D_\mu \psi]_+$	31	$[iar{\Psi}u^{\mu} ilde{\chi}_{-}\mathcal{D}_{\mu}\Psi]_{+}$	76	$[i\langle \bar{B}u^{\mu}\tilde{\chi}_{-}D_{\mu}B angle]_{+}$	78	$[i\langle \bar{B}\tilde{\chi}_{-}\rangle\langle u^{\mu}D_{\mu}B angle]_{+}$		
22	64494 (G. 301 401 Ung.443.30	2		77	$[i\langlear{B}D_{\mu}Bu^{\mu} ilde{\chi}_{-} angle]_{+}$		13		

Nonrelativistic reduction and adopted approximation

$$\begin{split} \bar{\psi}\psi &\to \psi_{H}^{\dagger}\psi_{H} \\ \bar{\psi}\gamma^{\mu}\gamma_{5}\psi \approx 2\bar{\psi}_{v}S^{\mu}\psi_{v} &\to \begin{cases} 0, & (\mu=0) \\ \psi_{H}^{\dagger}\sigma^{k}\psi_{H}, & (\mu=k) \end{cases} \\ \bar{\psi}\sigma^{\mu\nu}\psi \approx 2\epsilon^{\mu\nu\alpha\beta}v_{\alpha}\bar{\psi}_{v}S_{\beta}\psi_{v} &\to \begin{cases} \epsilon^{ijk}\psi_{H}^{\dagger}\sigma^{k}\psi_{H}, & (\mu=i,\nu=j) \\ 0, & (other) \end{cases} \\ \end{split}$$
Pauli-Lubanski 自旋失量 :
$$S^{\mu} = \frac{i}{2}\gamma_{5}\sigma^{\mu\nu}v_{\nu}, \psi_{v} = \frac{1+\psi}{2}\psi$$

Structure correspondences

D. Drechsel, Nuovo Cimento A 76, 388 (1983)

5

SU(2) 情形

$$1 \to \alpha_i = 3\beta_i, \quad \sigma \to \alpha_i = \beta_i, \quad \tau \to \alpha_i = \beta_i, \quad \tau \otimes \sigma \to \alpha_i = \frac{3}{3}\beta_i.$$

SU(3) 情形

八重态重子自旋-味道波函数

$$\begin{split} p_{\uparrow} &= \frac{1}{3\sqrt{2}} [udu \otimes (2\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow - \uparrow\uparrow\downarrow) + duu \otimes (2\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow - \uparrow\uparrow\downarrow) - uud \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ n_{\uparrow} &= \frac{1}{3\sqrt{2}} [udd \otimes (\uparrow\downarrow\uparrow - 2\downarrow\uparrow\uparrow + \uparrow\uparrow\downarrow) + dud \otimes (\downarrow\uparrow\uparrow - 2\uparrow\downarrow\uparrow + \uparrow\uparrow\downarrow) + ddu \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ \mathbf{\Sigma}_{\uparrow}^{+} &= -\frac{1}{3\sqrt{2}} [usu \otimes (2\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow - \uparrow\uparrow\downarrow) + suu \otimes (2\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow - \uparrow\uparrow\downarrow) - uus \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ \Sigma_{\uparrow}^{-} &= \frac{1}{3\sqrt{2}} [dsd \otimes (2\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow - \uparrow\uparrow\downarrow) + sdd \otimes (2\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow - \uparrow\uparrow\downarrow) - dds \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ \mathbf{\Xi}_{\uparrow}^{-} &= -\frac{1}{3\sqrt{2}} [uss \otimes (\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow - \uparrow\uparrow\downarrow) + sdd \otimes (2\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow - \uparrow\uparrow\downarrow) - dds \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ \mathbf{\Xi}_{\uparrow}^{-} &= -\frac{1}{3\sqrt{2}} [uss \otimes (\uparrow\downarrow\uparrow - 2\downarrow\uparrow\uparrow + \uparrow\uparrow\downarrow) + sus \otimes (\downarrow\uparrow\uparrow - 2\uparrow\downarrow\uparrow + \uparrow\uparrow\downarrow) + ssu \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ \mathbf{\Xi}_{\uparrow}^{-} &= \frac{1}{3\sqrt{2}} [sds \otimes (\downarrow\uparrow\uparrow + \uparrow\uparrow\uparrow - 2\uparrow\downarrow\uparrow) + dss \otimes (\uparrow\downarrow\uparrow + \uparrow\uparrow\uparrow - 2\downarrow\uparrow\uparrow) + ssd \otimes (\uparrow\downarrow\uparrow + \downarrow\uparrow\uparrow - 2\uparrow\uparrow\downarrow)], \\ \mathbf{\Sigma}_{\uparrow}^{0} &= -\frac{1}{6} [(dsu + usd) \otimes (2\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow - \uparrow\uparrow\uparrow) + (sdu + sud) \otimes (2\downarrow\uparrow\uparrow - \uparrow\downarrow\uparrow - \uparrow\uparrow\downarrow) + (uds - dus) \otimes (\uparrow\downarrow\uparrow - \downarrow\uparrow\uparrow)]. \end{split}$$

	Group	$SU(2)_{\chi PT} \Leftrightarrow SU(2)_{\chi QM}$		Group	$SU(3)_{\chi PT} \Leftrightarrow SU(3)_{\chi QM}$
$\mathcal{O}(p^1)$	1	$g_A = \frac{5}{3}g_A^q$.	$\mathcal{O}(p^1)$	1	$D=g^q_A,\ {\cal F}=rac{2}{3}g^q_A.$
$\mathcal{O}(\mathbf{p}^2)$	1	$\alpha_1 = 3\beta_1$:	$\mathcal{O}(p^2)$	1	$d_1 = -d_3 = c_2, \ d_2 = 0, \ d_4 = 3c_1 + c_2;$
- (1-)	2	$\alpha_2 = \frac{5}{2}\beta_2$		2	$d_{5}=5d_{6}=rac{5}{3}c_{3}$, $d_{7}=0$;
	2	$\alpha_2 = \frac{3\beta_2}{3\beta_2}$		3	$d_8 = -d_{10} = c_5, d_9 = 0, d_{11} = 3c_4 + c_5;$
	5	$lpha_3 = 5 ho_3$,		4	$d_{12} = 5d_{13} = \frac{5}{3}c_6;$
	4	$\alpha_4 = \frac{3}{3}\beta_4;$		5	$d_{14} = -d_{15} = c_7, \ d_{16} = 3c_8.$
	5	$\alpha_6=\beta_6, \ \alpha_7=3\beta_7.$	$\mathcal{O}(p^3)$	1	$d_1 = \frac{5}{6}(2c_1 + c_2 + 2c_4), \ d_2 = 5d_7 = \frac{5}{3}c_2, \ d_3 = d_5 = -\frac{5}{4}d_9 = -d_{11} = \frac{5}{6}(2c_1 - c_2),$
$\mathcal{O}({\pmb{p}}^3)$	1	$lpha_1=rac{5}{3}eta_1$, $lpha_2=rac{5}{3}eta_2$;			$d_4 = d_6 = 0$, $d_8 = \frac{1}{6}(10c_1 - 3c_2 + 2c_4)$, $d_{10} = \frac{1}{6}(-10c_1 - 7c_2 + 6c_3 - 4c_4)$;
	2	$\alpha_3 = 3\beta_3;$		2	$d_{12} = -d_{15} = c_6$, $d_{13} = d_{14} = 0$, $d_{16} = 3c_5 + c_6$;
	3	$\alpha_4 = \frac{5}{2}\beta_4, \ \alpha_5 = \frac{5}{2}\beta_5;$		3	$d_{17} = \frac{5}{6}(c_7 + 2c_8 + 2c_{10}), \ d_{18} = 5d_{24} = \frac{5}{3}c_7, \ d_{19} = d_{22} = -\frac{5}{4}d_{26} = -d_{27} = \frac{5}{6}(-c_7 + 2c_8),$
	4	$\alpha_6 = \beta_6$:			$d_{20} = d_{21} = 0, \ d_{23} = \frac{1}{6}(-3c_7 + 10c_8 + 2c_{10}), \ d_{25} = \frac{1}{6}(-7c_7 - 10c_8 + 6c_9 - 4c_{10});$
	5	$\alpha_7 = \beta_7$		4	$d_{28} = -d_{29} = c_{11}, \ d_{30} = 0;$
	6	$\alpha_7 = \beta_7;$		5	$d_{31} = -d_{32} = c_{12}, \ d_{33} = 0;$
	0	$\alpha_8 = \rho_8,$		6	$d_{34} = 5d_{36} = \frac{5}{3}c_{14}, \ d_{35} = 0, \ d_{37} = c_{13} - \frac{2}{3}c_{14};$
	1	$\alpha_9 = \frac{1}{3}\beta_9;$		7	$d_{38} = 5d_{39} = \frac{5}{3}c_{15}, \ d_{40} = 0;$
	8	$\alpha_{11} = 3\beta_{11};$		8	$d_{41} = -d_{44} = c_{17}, \ d_{42} = d_{43} = 0, \ d_{45} = 3c_{16} + 2c_{17};$
	9	$ \alpha_{12} = \beta_{12}; $		9	$d_{46} = -d_{47} = c_{18};$
	10	$lpha_{14}=rac{5}{3}eta_{14}$;		10	$d_{48} = 5d_{49} = \frac{5}{3}c_{19}, \ d_{50} = 0;$
	11	$\alpha_{15} = \beta_{15};$		11	$d_{51} = -d_{52} = c_{20}, \ d_{53} = 0;$
	12	$\alpha_{16} = \beta_{16}, \ \alpha_{17} = \beta_{17};$		12	$d_{54} = 5d_{60} = \frac{5}{3}c_{23}, \ d_{55} = 5d_{61} = \frac{5}{3}c_{24}, \ d_{56} = d_{57} = d_{58} = d_{59} = 0,$
	13	$\alpha_{18} = \frac{5}{2}\beta_{18};$			$d_{62} = c_{21} - rac{2}{3}c_{23}, \ d_{63} = c_{22} - rac{2}{3}c_{24};$
	14	$\alpha_{10} = \beta_{10} \alpha_{20} = \frac{5}{2}\beta_{20}$		13	$d_{64} = 5d_{65} = \frac{3}{3}c_{25};$
	15	$\alpha_{21} = \frac{5}{2}\beta_{21}, \alpha_{22} = \beta_{22};$		14	$d_{66} = 5d_{69} = \frac{5}{3}c_{28}, \ d_{67} = d_{68} = 0, \ d_{70} = c_{26} - \frac{2}{3}c_{28}, \ d_{71} = 5d_{72} = \frac{5}{3}c_{27};$
	16	$\alpha_{21} = \frac{\beta}{3} \beta_{21}, \ \alpha_{22} = \beta_{22}, \ \alpha_{22} = \beta_{22}, \ \alpha_{23} = \beta_{23}$		15	$d_{73} = 5d_{74} = \frac{5}{3}c_{29}, \ d_{75} = c_{30};$
	10	$\alpha_{23} = \rho_{23}.$		16	$d_{76} = -d_{77} = c_{31}, \ d_{78} = 0.$

LEC relations in baryon ChPT: χ QM $\Leftrightarrow \chi$ QM, ChPT \Leftrightarrow ChPT

	Group	$SU(3) \rightarrow SU(2) \rightarrow SU(2)$	G	roup	With χQM	Without χQM
(2) (1)	Group	$30(3)_{\chi QM} \leftrightarrow 30(2)_{\chi QM}$	$\mathcal{O}(p^1)$	1	$D = \frac{3}{5}g_A, \ F = \frac{2}{5}g_A.$	$D+F=g_{A}.$
$\mathcal{O}(p^1)$	1	$g_A^q = g_A^q.$	$\mathcal{O}(p^2)$	1	$\alpha_1 = \frac{1}{2}d_1 + d_4 = -\frac{1}{2}d_3 + d_4, \ d_2 = 0;$	$\alpha_1 = \frac{1}{2}d_1 + d_4;$
$\mathcal{O}(p^2)$	1	$eta_1= extsf{c}_1+rac{1}{2} extsf{c}_2;$		2	$\alpha_2 = d_5 = 5d_6, d_7 = 0;$	$\alpha_2 = d_5;$
	2	$eta_2={m c}_3$;		3	$\alpha_3 = \frac{1}{2}d_8 + d_{11} = -\frac{1}{2}d_{10} + d_{11}, d_9 = 0;$	$\alpha_3 = \frac{1}{2}d_8 + d_{11};$
	3	$\beta_3 = c_4 + \frac{1}{2}c_5$:		4	$\alpha_4 = d_{12} = 5 d_{13};$	$\alpha_4 = d_{12};$
	1	$\beta = 2$		5	$\alpha_6 = d_{14} = -d_{15}, \ \alpha_7 = \frac{1}{2}d_{14} + d_{16} = -\frac{1}{2}d_{15} + d_{16}.$	$\alpha_6 = d_{14}, \ \alpha_7 = \frac{1}{2}d_{14} + d_{16} - \frac{1}{3}(d_{14} + d_{15}).$
	4	$p_4 = c_6,$	$\mathcal{O}(p^3)$	1	$lpha_1+rac{1}{2}lpha_2={\it d}_1=5{\it d}_8-4{\it d}_3$, ${\it d}_3={\it d}_5=-rac{5}{4}{\it d}_9=-{\it d}_{11}$,	$\alpha_1 = d_1 - \frac{1}{2}d_2$, $\alpha_2 = d_2$;
$\mathcal{O}(p^3)$	1	$\beta_1 = c_1 + c_4, \ \beta_2 = c_2, \ c_3 \ (nc.);$			$lpha_2= extsf{d}_2=5 extsf{d}_7$, $ extsf{d}_4= extsf{d}_6=0$, $ extsf{d}_{10}$ (nc.);	
	2	$\beta_3 = c_5 + \frac{1}{2}c_6$		2	$lpha_3 = rac{1}{2} d_{12} + d_{16} = -rac{1}{2} d_{15} + d_{16}, \ d_{13} = d_{14} = 0;$	$\alpha_3 = rac{1}{2} d_{12} - d_{16};$
	3	$\beta_1 = c_7 \beta_7 = c_0 + c_{10} c_0 (nc)$		3	$\alpha_4 = d_{18} = 5d_{24}, \ \alpha_5 + \frac{1}{2}\alpha_4 = d_{17} = 5d_{23} - 4d_{19},$	$lpha_4 = {\it d}_{18}$, $lpha_5 = {\it d}_{17} - rac{1}{2} {\it d}_{18}$;
	4	$p_4 = c_7, p_5 = c_8 + c_{10}, c_9 (ne.);$			$d_{19} = d_{22} = -\frac{5}{4}d_{26} = -d_{27}, \ d_{20} = d_{21} = 0, \ d_{25} \ (nc.);$	
	4	$\rho_6 = c_{11};$ $c_3 \bar{\Psi} \langle u^{\mu} \rangle$	$u_{\mu}u^{\nu}\rangle\gamma_{\mu}\gamma$	$_{5}\Psi$	$lpha_{6}={\it d}_{28}=-{\it d}_{29}$, ${\it d}_{30}=0$;	$lpha_6={\it d}_{28}$;
	5	$\beta_7 = c_{12}; \qquad \qquad \overline{ \overline{ z} / \overline{ z} }$	(μ)	0 0 7	$\alpha_7 = d_{31} = -d_{32}, \ d_{33} = 0;$	$lpha_7={\it d}_{31}$;
	6	$eta_8= extsf{c}_{13}+ extsf{c}_{14}; \ \ c_9\Psi\langle u^\mu u^\mu u^\mu u^\mu u^\mu u^\mu u^\mu u^\mu u^\mu u^\mu$	$\langle u^{\star} \rangle \gamma_{\mu} \gamma_5 D$	$_{\nu\lambda}\Psi$	$lpha_8={\it d}_{34}+{\it d}_{37}=5{\it d}_{36}+{\it d}_{37}$, ${\it d}_{35}=0$;	$lpha_8={\it d}_{34}+{\it d}_{37};$
	7	$eta_9= extsf{c}_{15}$;		7	$\alpha_9 = d_{38} = 5d_{39}, \ d_{40} = 0;$	$lpha_9={\it d}_{38}$;
	8	$\beta_{11} = c_{16} + c_{17};$		8	$\alpha_{11} = d_{41} + d_{45} = -d_{44} + d_{45}, \ d_{42} = d_{43} = 0;$	$\alpha_{11} = d_{41} + d_{45};$
	9	$\beta_{12} = c_{12}$:		9	$\alpha_{12} = d_{46} = -d_{47};$	$\alpha_{12} = d_{46};$
	10	$\beta_{12} = c_{18};$		10	$\alpha_{14} = d_{48} = 5d_{49}, \ d_{50} = 0;$	$\alpha_{14} = d_{48};$
	10	$p_{14} - c_{19},$		11	$\alpha_{15} = d_{51} = -d_{52}, \ d_{53} = 0;$	$\alpha_{15} = d_{51};$
	11	$eta_{15} = c_{20};$		12	$\alpha_{16} = d_{54} + d_{62} = 5d_{60} + d_{62}, \ \alpha_{17} = d_{55} + d_{63} = 5d_{61} + d_{63},$	$\alpha_{16} = d_{54} + d_{62}, \ \alpha_{17} = d_{55} + d_{63};$
	12	$\beta_{16} = c_{21} + c_{23}, \ \beta_{17} = c_{22} + c_{24};$		19120	$d_{56} = d_{57} = d_{58} = d_{59} = 0;$	
	13	$eta_{18}=c_{25};$		13	$\alpha_{18} = d_{64} = 5d_{65};$	$\alpha_{18} = d_{64};$
	14 /	$\beta_{19} = c_{26} + c_{28}, \ \beta_{20} = c_{27} + \frac{1}{2}c_{28}$		14	$\alpha_{19} = d_{66} + d_{70} = 5d_{69} + d_{70}, \ d_{67} = d_{68} = 0,$	$\alpha_{19} = d_{66} + d_{70}, \ \alpha_{20} = \frac{1}{3}d_{66} - \frac{1}{3}d_{68} + d_{71};$
	15	$\beta_{01} = c_{00} \beta_{00} = \frac{1}{2}c_{00} + c_{00}$		10	$\alpha_{20} = \frac{1}{3}d_{66} + d_{71} = \frac{1}{3}d_{69} + d_{71} = \frac{1}{3}d_{66} + 5d_{72};$	
	16	$\rho_{21} = c_{29}, \ \rho_{22} = \frac{1}{6}c_{29} + c_{30},$		15	$\alpha_{21} = d_{73} = 5d_{74}, \ \alpha_{22} = \frac{1}{10}d_{73} + d_{75} = \frac{1}{2}d_{74} + d_{75};$	$\alpha_{21} = d_{73}, \ \alpha_{22} = \frac{1}{6}d_{73} - \frac{1}{3}d_{74} + d_{75};$
	10	$\rho_{23} = c_{31}.$		16	$\alpha_{23} = d_{76} = -d_{77}, \ d_{78} = 0.$	$\alpha_{23} = d_{76.}$ 18

$$\left\{ \begin{array}{l} \bar{p}\pi^{0}p\\ \bar{n}\pi^{0}n \end{array} \right\} \Rightarrow D + F = \frac{5}{3}g_{A}^{q} \\ \left\{ \begin{array}{l} \bar{\Sigma}^{+}\pi^{0}\Sigma^{+}\\ \bar{\Sigma}^{-}\pi^{0}\Sigma^{-} \end{array} \right\} \left\{ \begin{array}{l} \bar{\Sigma}^{0}\pi^{+}\Sigma^{-}\\ \bar{\Sigma}^{-}\pi^{-}\Sigma^{0} \end{array} \right\} \Rightarrow F = \frac{2}{3}g_{A}^{q}$$

Numerical analysis: corrections become important for high-order LEC relations

The case including $\Delta(1232)$ $(i\partial - m_{\Delta})\Psi_{\mu} = 0,$ • Rarita-Schwinger field $\gamma^{\mu}\Psi_{\mu} = 0,$ $\Psi_{\mu}(x) = \sum_{s_{\Delta}} \int \frac{d^3 p M_{\Delta}}{(2\pi)^3 E} \left[b(\boldsymbol{p}, s_{\Delta}) u_{\mu}(\boldsymbol{p}, s_{\Delta}) e^{-i\boldsymbol{p}\cdot\boldsymbol{x}} + d^{\dagger}(\boldsymbol{p}, s_{\Delta}) v_{\mu}(\boldsymbol{p}, s_{\Delta}) e^{i\boldsymbol{p}\cdot\boldsymbol{x}} \right].$

其中 $u_{\mu}(\mathbf{p}, s_{\Delta})$ 是 Rarita-Schwinger 旋量,自旋-1 矢量和自旋-1/2 的旋量的耦合

$$\begin{split} u_{\mu}(\boldsymbol{p}, \boldsymbol{s}_{\Delta}) &= \sum_{\lambda, s} \langle 1\lambda \frac{1}{2} \boldsymbol{s} | \frac{3}{2} \boldsymbol{s}_{\Delta} \rangle \boldsymbol{e}_{\mu}(\boldsymbol{p}, \lambda) \boldsymbol{u}(\boldsymbol{p}, \boldsymbol{s}) \\ \boldsymbol{e}^{\mu}(\boldsymbol{p}, \lambda) &= \left(\frac{\hat{\boldsymbol{e}}_{\lambda} \cdot \boldsymbol{p}}{M_{\Delta}}, \ \hat{\boldsymbol{e}}_{\lambda} + \frac{\boldsymbol{p}(\hat{\boldsymbol{e}}_{\lambda} \cdot \boldsymbol{p})}{M_{\Delta}(\boldsymbol{p}_{0} + M_{\Delta})}\right), \ \boldsymbol{u}(\boldsymbol{p}, \boldsymbol{s}) = \sqrt{\frac{E + M_{\Delta}}{2M_{\Delta}}} \left(\begin{array}{c} \chi_{s} \\ \frac{\boldsymbol{\sigma} \cdot \boldsymbol{p}}{E + m} \chi_{s} \end{array}\right) \\ \pm \boldsymbol{\psi} \pm \boldsymbol{\hat{e}} \pm \hat{\boldsymbol{e}}_{\lambda}, \lambda &= 0, \pm 1 \text{ ibstables} \quad \hat{\boldsymbol{e}}_{+} = -\frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ i \\ 0 \end{array}\right) \quad \hat{\boldsymbol{e}}_{0} = \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right) \quad \hat{\boldsymbol{e}}_{-} = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ -i \\ 0 \end{array}\right) \end{split}$$

Hemmert et al., J. Phys. G 24, 1831 (1998)

非相对论约化

Define transition spin $S_{t\mu}$:

$$\begin{split} \bar{B}B' &\to B_{H}^{\dagger}B'_{H}, \\ \bar{B}\gamma^{\mu}\gamma_{5}B' &\to B_{H}^{\dagger}\sigma^{k}B'_{H} \quad (\mu=k=1,2,3), \\ \bar{B}\sigma^{\mu\nu}B' &\to \epsilon^{ijk}B_{H}^{\dagger}\sigma^{k}B'_{H} \quad (\mu=i,\nu=j). \end{split}$$

$$T^{abc}_{\mu} \equiv S_{t\mu}T^{abc} = \sqrt{\frac{1}{3}(\frac{9}{2} - a - b - c)^2 + \frac{1}{4}\Phi^{abc}_{\mu}} = \sqrt{\frac{1}{3}(\frac{9}{2} - a - b - c)^2 + \frac{1}{4}S_{t\mu}\Phi^{abc}}$$

取静态极限,
$$S_t^{\mu} = (0, \vec{S}_t), \Delta$$
 重子自旋波函数的第三分量如下

$$\Phi_{s_{z}=3/2} = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix}, \ \Phi_{s_{z}=1/2} = \begin{pmatrix} 0\\ 1\\ 0\\ 0 \end{pmatrix}, \ \Phi_{s_{z}=-1/2} = \begin{pmatrix} 0\\ 0\\ 1\\ 0 \end{pmatrix}, \ \Phi_{s_{z}=-3/2} = \begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix}.$$

使用 RS 旋量表达式 $\Phi_{\mu}(s_z) = \sum_{\lambda,s} \langle 1\lambda_2^{\frac{1}{2}} s_z \rangle e_{\mu}(\lambda) u(s)$

$$S_t^3 = \left(\begin{array}{ccc} 0 & \sqrt{\frac{2}{3}} & 0 & 0\\ 0 & 0 & \sqrt{\frac{2}{3}} & 0 \end{array}\right)$$

٠

22

 $\sigma_{RS}^{\mu} \equiv -\bar{S}_{t\rho} \gamma^{\mu} \gamma^{5} S_{t}^{\rho} \to \vec{\sigma}_{RS} = (S_{t}^{\dagger})^{j} \vec{\sigma} (S_{t})^{j}$: spin operator of RS field

$$\sigma_{RS}^{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

The case incl

he case including $\Delta(1232)$	$\mathcal{L}_{\pi NN/\pi qq}$	$\mathcal{L}_{\pi\Delta\Delta}$	$\mathcal{L}_{\pi N\Delta}$
Value of k_1 :	$\frac{\frac{1}{2}(g_A/g_A^q)\psi u^\mu \gamma_\mu \gamma_5 \psi}{\mu}$	$\frac{1-e_1^{(1)}T^{abc}, u^{ab}, \mu \sigma_{RS,\mu}T^{bca}}{5 \sigma^q}$	$\frac{f_1^{(1)}\epsilon^{uo}N^c u^{uu,\mu}S_{t,\mu}T^{bcu} + h.c.}{3\sqrt{2}}$
$g_{\pi N\Delta} = \sqrt{2}I_1$, $I_1 =$	$\kappa_1 g_A, g_A =$	$\overline{3}g_A \Rightarrow g_{\pi N\Delta}$	$= \frac{1}{5} \kappa_1 g_A$
■ 当不引入 k_1 时, $g_{\pi N\Delta}^{QM}/g$	$g_{\pi NN}^{QN} \approx 1.7$,	与实验数据g ^e	$s_{N\Delta}^{ m pr}/g_{\piNN}^{ m expt} \approx$
2.21 不一致	Hemmert et al	., J. Phys. G 24, 1831	(1998)
• 当 $k_1 = \frac{5}{4}$ 时, $g_{\pi N\Delta}^{QM}/g_{\pi N}^{QN}$	$_{\rm IN}^{\rm M} \approx 2.13$,	与实验相符	
	Bernard et al.,	Int. J. Mod. Phys. E 4	, 193 (1995)
■考虑到 S ³ _t 中的数值,	我们取 $k_1 =$	$\sqrt{\frac{3}{2}} \approx 1.225$	
$S_t^3 = \begin{pmatrix} 0 & \sqrt{\frac{2}{3}} & 0 & 0 \\ 0 & 0 & \sqrt{\frac{2}{3}} & 0 \end{pmatrix}$		$f_1^{(1)} = e_1^{(1)}$	$=k_1g_A^q,$ $=-\frac{3}{2}g_A^q.$

$\mathcal{L}_{\pi NN/\pi qq}$	${\cal L}_{\pi\Delta\Delta}$	${\cal L}_{\pi N\Delta}$
${1\over 2}(g_A/g^q_A)ar\psi u^\mu\gamma_\mu\gamma_5\psi$	$-e_1^{(1)}T^{abc,\dagger}u^{ad,\mu}\sigma_{RS,\mu}T^{bcd}$	$f_1^{(1)} \epsilon^{ab} \bar{N}^c u^{ad,\mu} S_{t,\mu} T^{bcd} + h.c.$

Phenomenological perspective

• J=1/2 case operator correspondence $\vec{\sigma}_{hadron} \leftrightarrow \vec{\sigma}_{quark}$

 $|\frac{1}{2},\frac{1}{2}\rangle_{hadron} = \sigma^{z}_{hadron}|\frac{1}{2},\frac{1}{2}\rangle_{hadron}$; σ^{z}_{hadron} (σ^{z}_{quark}) transits $|\frac{1}{2},\frac{1}{2}\rangle$ to the same state.

• Present operator correspondence $\sqrt{rac{3}{2}} \vec{S}_t
ightarrow \vec{\sigma}_{quark}$

 $|\frac{1}{2},\frac{1}{2}\rangle_{hadron} = \sqrt{\frac{3}{2}}S_{t,hadron}^{z}|\frac{3}{2},\frac{1}{2}\rangle_{hadron} : \sqrt{\frac{3}{2}}S_{t}^{z} \text{ transits } |\frac{3}{2},\frac{1}{2}\rangle \text{ to } |\frac{1}{2},\frac{1}{2}\rangle.$

- Present operator correspondence $\vec{\sigma}_{RS} \rightarrow \vec{\sigma}_{quark}$

 $|\frac{3}{2},\frac{3}{2}
angle = \sigma_{RS}^{z}|\frac{3}{2},\frac{3}{2}
angle : \sigma_{RS}^{z}$ transits $|\frac{3}{2},\frac{3}{2}
angle$ to the same state.

$\mathcal{O}(p^1)$ 和 $\mathcal{O}(p^2)$ 阶的结构对应关系

$$\begin{split} k_1 S_t^{\mu} &\to \gamma^{\mu} \gamma^5, \\ k_2 \sigma_t^{\mu\nu} \equiv i k_2 (\gamma^{\mu} \gamma^5 S_t^{\nu} - \gamma^{\nu} \gamma^5 S_t^{\mu}) = k_2 \epsilon^{\mu\nu\rho\lambda} \gamma_{\rho} S_{t\lambda} &\to \sigma^{\mu\nu}; \\ &- \bar{S}_{t\rho} S_t^{\rho} = 1 &\to 1, \\ \sigma_{RS}^{\mu} \equiv - \bar{S}_{t\rho} \gamma^{\mu} \gamma^5 S_t^{\rho} &\to \gamma^{\mu} \gamma^5, \\ \sigma_{RS}^{\mu\nu} \equiv -i (\bar{S}_t^{\mu} S_t^{\nu} - \bar{S}_t^{\nu} S_t^{\mu}) = - \bar{S}_{t\rho} \sigma^{\mu\nu} S_t^{\rho} &\to \sigma^{\mu\nu}. \end{split}$$

$\mathcal{O}(p^3)$ 阶的结构对应关系

$$\begin{aligned} k_{3}\sigma^{\mu\nu}S_{t}^{\lambda} &\to i\left(g^{\nu\lambda}\gamma^{\mu}\gamma^{5}-g^{\mu\lambda}\gamma^{\nu}\gamma^{5}-i\varepsilon^{\mu\nu\lambda\rho}\gamma_{\rho}\right) \\ &\doteq i\left(g^{\nu\lambda}\gamma^{\mu}\gamma^{5}-g^{\mu\lambda}\gamma^{\nu}\gamma^{5}+\frac{1}{m_{\Delta}}\varepsilon^{\mu\nu\lambda\rho}D_{\rho}\right), \\ k_{4}(\gamma^{\mu}\gamma_{5}S_{t}^{\nu}+\gamma^{\nu}\gamma_{5}S_{t}^{\mu}) &\to g^{\mu\nu}; \\ &-k_{5}(\bar{S}_{t}^{\mu}S_{t}^{\nu}+\bar{S}_{t}^{\nu}S_{t}^{\mu}) &\to g^{\mu\nu}, \\ -k_{6}(\bar{S}_{t}^{\mu}\gamma^{\lambda}\gamma_{5}S_{t}^{\nu}+\bar{S}_{t}^{\nu}\gamma^{\lambda}\gamma_{5}S_{t}^{\mu}) &\to (g^{\lambda\mu}\gamma^{\nu}\gamma_{5}+g^{\lambda\nu}\gamma^{\mu}\gamma_{5}-g^{\mu\nu}\gamma^{\lambda}\gamma^{5}), \\ -k_{7}(\bar{S}_{t}^{\mu}\gamma^{\lambda}\gamma_{5}S_{t}^{\nu}-\bar{S}_{t}^{\nu}\gamma^{\lambda}\gamma_{5}S_{t}^{\mu}) &\to i\varepsilon^{\mu\nu\lambda\rho}\gamma_{\rho} \doteq -\frac{1}{m_{\Delta}}\varepsilon^{\mu\nu\lambda\rho}D_{\rho}. \end{aligned}$$

 $\mathcal{O}(p^2)$ 阶拉氏量

	$\mathcal{L}_{\pi NN/\pi qq} lpha_{i}^{(2)}/eta_{i}^{(2)}$		$\mathcal{L}_{\pi\Delta\Delta} \ \hat{e}^{(2)}_{:}$		$\mathcal{L}_{\pi N\Delta} \ \hat{f}^{(2)}_{i}$
1	$\bar{\psi}\langle u^{\mu}u_{\mu} angle \psi$	1	$\bar{T}^{abc,\lambda}\langle u^{\mu}u_{\mu} angle T^{abc}_{\lambda}$		
		2	$ar{T}^{abc,\lambda} u^{ag,\mu} u^{be}_{\mu} T^{cge}_{\lambda}$		
		3	$ar{T}_{\mu}^{abc} \langle u^{\mu} u^{ u} angle^{T_{\mu}^{abc}}$	65	
		4	$ar{\mathcal{T}}_{\mu}^{abc}u^{ag,\mu}u^{be, u}\mathcal{T}_{ u}^{cge}$	1	$[\epsilon^{bc}\bar{N}^{a}u^{ag,\mu}u^{be,\nu}(\gamma_{\mu}\gamma_{5}T_{\nu}^{cge}+\gamma_{\nu}\gamma_{5}T_{\mu}^{cge})]_{+}$
2	$iar{\psi} u^\mu u^ u \sigma_{\mu u} \psi$	5	$i \overline{T}^{abc,\lambda} (u^{\mu} u^{\nu})^{ae} \sigma_{\mu\nu} T^{bce}_{\lambda}$	2	$[\epsilon^{ab}\bar{N}^{c}(u^{\mu}u^{\nu})^{ae}(\gamma_{\mu}\gamma_{5}T_{\nu}^{bce}-\gamma_{\nu}\gamma_{5}T_{\mu}^{bce})]_{+}$
-	1000			6	
3	$ar{\psi}\langle u^{\mu}u^{ u} angle {\cal D}_{\mu u}\psi$	6	$ar{T}^{{\scriptstyle abc},\lambda}\langle u^{\mu}u^{ u} angle D_{\mu u}T_{\lambda}^{{\scriptstyle abc}}$		
		7	$ar{\mathcal{T}}^{abc,\lambda}u^{ag,\mu}u^{be, u}\mathcal{D}_{\mu u}\mathcal{T}_{\lambda}^{cge}$		
4	$ar{\psi} ilde{f}^{\mu u}_+ \sigma_{\mu u} \psi$	8	$ar{\mathcal{T}}^{{\it abc},\lambda}(ilde{f}^{\mu u}_+)^{{\it ae}}\sigma_{\mu u}\mathcal{T}^{{\it bce}}_\lambda$	3	$[i\epsilon^{ab}ar{N}^{c}(ilde{f}^{\mu u}_{+})^{ae}(\gamma_{\mu}\gamma_{5}T^{bce}_{ u}-\gamma_{ u}\gamma_{5}T^{bce}_{\mu})]_{+}$
5	$ar{\psi}\langle f_{+}^{\mu u} angle\sigma_{\mu u}\psi$	9	$ar{T}^{abc,\lambda}\langle f_{+}^{\mu u} angle \sigma_{\mu u}T_{\lambda}^{abc}$		
6	$ar{\psi} ilde{\chi}_+\psi$	10	$ar{\mathcal{T}}^{m{abc},\lambda} ilde{\chi}^{m{ae}}_+\mathcal{T}^{m{bce}}_\lambda$		
7	$ar{\psi}\langle\chi_+ angle\psi$	11	$ar{\mathcal{T}}^{{\scriptstyle abc},\lambda}\langle\chi_+ angle\mathcal{T}_\lambda^{{\scriptstyle abc}}$		

	$\mathcal{L}_{\pi NN/\pi qq}$		$\mathcal{L}_{\pi\Delta\Delta}$		$\mathcal{L}_{\pi N \Delta}_{\hat{\boldsymbol{\mathcal{L}}}^{(3)}}$
1	α_i / ρ_i	1	$\overline{T}^{abc,\lambda}/\mu^{\mu}\mu^{\lambda}\mu^{ae,\nu}\gamma_{\lambda}\sim T^{bce}$	1	$\begin{bmatrix} e^{bc} \overline{N}^{d} / \mu^{\mu} \mu \end{pmatrix} \mu^{be,\nu} T^{cde} \end{bmatrix}$
2	$\overline{\psi}\langle u^{\mu}u^{\nu}\rangle u_{\nu}\gamma_{\nu}\gamma_{\tau}\psi$	2	$\bar{T}^{abc,\lambda}\langle u^{\mu}u^{\nu}\rangle u^{ae}\gamma,\gamma \in T^{bce}$	2	$[\epsilon^{bc} \bar{N}^{d} \langle \mu^{\mu} \mu^{\nu} \rangle \mu^{bc} T^{cde}]$
3	$\varepsilon_{\mu\nu\lambda\sigma}\bar{\psi}\langle u^{\mu}u^{\nu}u^{\lambda}\rangle D^{\rho}\psi$	3	$\bar{T}^{abc,\eta} \langle u^{\mu} u^{\nu} u^{\lambda} \rangle D^{\rho} T^{abc}$	-	$[c n \langle a a \rangle a_{\mu} r_{\nu}]+$
	$=\mu\nu\lambda\rho+\sqrt{2}$	4	$\bar{T}^{abc,\lambda} u^{ad,\mu} u^{be} u^{cf,\nu} \gamma_{\nu} \gamma_{\tau} T^{def}$	3	$[\epsilon^{bc} \bar{N}^d (\mu^{\mu} \mu^{\nu})^{be} \mu^{df} T^{cef}]_{+}$
		5	$\bar{T}_{a}^{abc} u^{ad,\rho} u^{be,\nu} u^{cf,\lambda} \gamma_{\nu} \gamma_{5} T_{\lambda}^{def}$	4	$[i\epsilon^{bc}\bar{N}^d(u^{\mu}u^{\nu})^{be}u^{df,\lambda}\sigma_{\mu\nu}T^{cef}]_+$
		6	$\overline{T}_{a}^{abc} \langle u^{\rho} u^{\lambda} \rangle u^{ae,\nu} \gamma_{\nu} \gamma_{5} T_{\lambda}^{bce}$	5	$[i\epsilon^{bc}\bar{N}^{d}\langle u^{\mu}u^{\lambda}\rangle u^{be,\nu}\sigma_{\mu\nu}T_{\lambda}^{cde}]_{+}$
		7	$[\bar{T}_{a}^{abc}\langle u^{\rho}u^{\nu}\rangle u^{ae,\lambda}\gamma_{\nu}\gamma_{5}T_{\lambda}^{bce}]_{+}$	0	
		8	$\overline{T}_{\rho}^{abc}[u^{ ho},u^{\lambda}]^{ad}u^{be, u}\gamma_{\nu}\gamma_{5}T_{\lambda}^{cde}$		
4	$\bar{\psi}\langle u^{\mu}u^{ u}\rangle u^{\lambda}\gamma_{\mu}\gamma_{5}D_{ u\lambda}\psi$	9	$\overline{T}^{abc,\rho} \langle u^{\mu} u^{\nu} \rangle u^{ae,\lambda} \gamma_{\mu} \gamma_5 D_{\nu\lambda} T^{bce}_{\rho}$	6	$[\epsilon^{bc} \bar{N}^d \langle u^{\mu} u^{ u} \rangle u^{be,\lambda} D_{\nu\lambda} T^{cde}_{\mu}]_+$
5	$\bar{\psi}\langle u^{\mu}u^{ u}\rangle u^{\lambda}\gamma_{\lambda}\gamma_{5}D_{\mu u}\psi$	10	$\bar{T}^{abc, ho}\langle u^{\mu}u^{ u}\rangle u^{ae,\lambda}\gamma_{\lambda}\gamma_{5}D_{\mu u}T^{bce}_{ ho}$	7	$[\epsilon^{bc} \bar{N}^{d} \langle u^{\mu} u^{ u} \rangle u^{be,\lambda} D_{\mu u} T^{cde}_{\lambda}]_{+}$
		11	$\overline{T}^{abc,\rho} u^{ad,\mu} u^{be,\nu} u^{cf,\lambda} \gamma_{\mu} \gamma_5 \overline{D}_{\nu\lambda} T^{def}_{\rho}$	8	$[\epsilon^{bc} \bar{N}^d (u^\mu u^ u)^{be} u^{df,\lambda} D_{\mu\lambda} T^{cef}_ u]_+$
6	$[ar{\psi} u_\mu h^{\mu u} \mathcal{D}_ u \psi]_+$	12	$[\overline{T}^{abc,\rho}(u_{\mu}h^{\mu\nu})^{ae}D_{\nu}T^{bce}_{ ho}]_+$	4	
7	$[ar{\psi} u^\mu h^{ u\lambda} \mathcal{D}_{\mu u\lambda} \psi]_+$	13	$[\overline{T}^{abc, ho}(u^\mu h^{ u\lambda})^{ae} D_{\mu u\lambda}\overline{T}^{bce}_ ho]_+$		
8	$iar{\psi}\langle u^{\mu}h^{ u\lambda} angle\sigma_{\mu u}{\cal D}_{\lambda}\psi$	14	$i \bar{T}^{abc, ho} \langle u^{\mu} h^{ u\lambda} angle \sigma_{\mu u} D_{\lambda} \bar{T}^{abc}_{ ho}$		
				9	$[\epsilon^{bc}\bar{N}^{d}(u^{\mu}h^{\nu\lambda})^{be}D_{\lambda}(\gamma_{\mu}\gamma_{5}T_{\nu}^{cde}+\gamma_{\nu}\gamma_{5}T_{\mu}^{cde})]_{+}$
				10	$[\epsilon^{bc} \bar{N}^{d} u^{be,\mu} h^{df,\nu\lambda} \gamma_{\mu} \gamma_{5} D_{\lambda} T_{\nu}^{cef}]_{+}$
9	$iar{\psi}[ar{f}_+^{\mu u},u_\mu]\gamma_ u\gamma_5\psi$	15	$i \overline{T}^{abc, ho} [ilde{f}^{\mu u}_+, u_\mu]^{ae} \gamma_ u \gamma_5 T^{bce}_ ho$	11	$[i\epsilon^{bc}ar{N}^d[ar{f}_+^{\mu u},u_\mu]^{be}\mathcal{T}_ u^{cde}]_+$
10	$iarepsilon_{\mu u\lambda ho}ar{\psi}\langle f^{\mu u}_+ angle u^\lambda D^ ho\psi$	16	$iarepsilon_{\mu u\lambda ho}ar{T}^{abc,\eta}\langle f^{\mu u}_{\pm} angle u^{ae,\lambda}D^{ ho}T^{bce}_{\eta}$		
11	$iarepsilon_{\mu u\lambda ho}ar{\psi}\langlear{f}_+^{\mu u}u^\lambda angle D^ ho\psi$	17	$iarepsilon_{\mu u\lambda ho}ar{T}^{abc,\eta}\langlear{f}^{\mu u}_+u^\lambda angle D^ hoT^{abc}_\eta$		
		18	$iar{T}_{\mu}^{abc}\langlear{f}_{+}^{\mu u}u^{\lambda} angle\gamma_{\lambda}\gamma_{5}T_{ u}^{abc}$	12	$[i\epsilon^{bc}ar{N}^dar{f}^{be,\mu u}_+u^{df}_\mu au^{cef}_ u]_+$
		19	$[i\overline{T}_{\lambda}^{abc}[ilde{f}_{+}^{\mu u},u^{\lambda}]^{ae}\gamma_{\mu}\gamma_{5}T_{ u}^{bce}]_{+}$	13	$f^{(3)}_{27}: [i\epsilon^{bc}ar{N}^{d}\langle f^{\mu u}_{+} angle u^{be}_{\mu} T^{cde}_{ u}]_{+}$
		20	$i \varepsilon_{\mu u\lambda ho} \bar{T}^{abc,\eta} \tilde{f}^{ad,\mu u}_+ u^{be,\lambda} D^{ ho} T^{cde}_\eta$	14	$[\epsilon^{bc} \bar{N}^d \langle f_+^{\mu\nu} \rangle u^{be,\lambda} \sigma_{\mu\nu} T_\lambda^{cde}]_+$
		21	$i \bar{T}^{abc}_{\mu} \tilde{f}^{ad,\mu\nu}_{+} u^{be,\lambda} \gamma_{\lambda} \gamma_{5} T^{cde'}_{\nu}$	15	$[\epsilon^{bc} \bar{N}^{d} \tilde{f}^{be,\mu\nu}_{+} u^{df,\lambda} \sigma_{\mu\nu} T^{cef}_{\lambda}]_{+}$
		22	$i \check{T}^{abc}_{\mu} \langle f^{\mu u}_+ angle u^{ae,\lambda} \gamma_\lambda \gamma_5 T^{bce}_{ u}$	16	$[\epsilon^{bc} ar{N}^d [ilde{f}^{\mu u}_+, u^\lambda]^{bc} \sigma_{\mu u} T^{cde}_\lambda]_+$
12	$iar{\psi} abla_\mu \widetilde{f}^{\mu u}_+ D_ u\psi$	23	$iar{\mathcal{T}}^{abc, ho}(abla_{\mu}ar{f}^{\mu u}_{+})^{ae}D_{ u}\mathcal{T}^{bce}_{ ho}$		
13	$iar{\psi}\langle abla_\mu f_+^{\mu u} angle {\sf D}_ u\psi$	24	$iar{T}^{abc, ho}\langle abla_{\mu}f^{\mu u}_{+} angle D_{ u}T^{abc}_{ ho}$		

O(p³) 阶拉氏量第 6 到第 11 组

	$\mathcal{L}_{\pi NN/\pi qq} lpha_{lpha_{i}^{(3)}}^{(3)} eta_{i}^{(3)}$		$\mathcal{L}_{\pi\Delta\Delta} \ \hat{e}_i^{(3)}$		$\mathcal{L}_{\pi N\Delta} {\hat{f}_i^{(3)}}$
14	$[i\bar{\psi}\tilde{f}^{\mu\nu}_{+}u^{\lambda}\gamma_{\mu}\gamma_{5}D_{\nu\lambda}\psi]_{+}$	25	$[i\bar{T}^{abc,\rho}(\tilde{f}^{\mu\nu}_{+}u^{\lambda})^{ae}\gamma_{\mu}\gamma_{5}D_{\nu\lambda}T^{bce}_{o}]_{+}$	17	$[i\epsilon^{bc}\bar{N}^d[\tilde{f}^{\mu u}_+,u^\lambda]^{be}D_{\nu\lambda}T^{cde}_u]_+$
				18	$[i\epsilon^{bc}\bar{N}^{d}\tilde{f}^{be,\mu\nu}_{+}u^{df,\lambda}D_{\nu\lambda}T^{cef}_{\mu}]_{+}$
				19	$[i\epsilon^{bc}ar{N}^d\langle f_+^{\mu u} angle u^{be,\lambda}D_{ u\lambda}T^{cde}_{\mu}]_+$
15	$[ar{\psi} u_\mu f^{\mu u} D_ u \psi]_+$	26	$[\bar{T}^{abc, ho}(u_{\mu}f_{-}^{\mu u})^{ae}D_{ u}T_{ ho}^{bce}]_{+}$		
16	$iar{\psi}\langle u^{\mu}f_{-}^{ u\lambda} angle\sigma_{\mu u} {\cal D}_{\lambda}\psi$	27	$i \bar{T}^{abc, ho} \langle u^{\mu} f_{-}^{ u\lambda} angle \sigma_{\mu u} D_{\lambda} T_{ ho}^{abc}$		
17	$iar{\psi}\langle u^{\mu}f_{-}^{ u\lambda} angle\sigma_{ u\lambda}D_{\mu}\psi$	28	$i \bar{T}^{abc, ho} \langle u^{\mu} f_{-}^{ u\lambda} angle \sigma_{ u\lambda} D_{\mu} T_{ ho}^{abc}$		
		29	$[\overline{T}_{\mu}^{abc}[u^{\mu}, f_{-}^{ u\lambda}]^{ae}D_{\lambda}T_{\nu}^{bce}]_{+}$	20	$[\epsilon^{bc} N^d (u^{\mu} f_{-}^{\nu\lambda})^{be} D_{\lambda} (\gamma_{\mu} \gamma_5 T_{\nu}^{cde} - \gamma_{\nu} \gamma_5 T_{\mu}^{cde})]_+$
		30	$i \overline{T}^{abc, ho} u^{ad, \mu} f^{be, u \lambda}_{-} \sigma_{\mu u} D_{\lambda} T^{cde}_{ ho}$	21	$[\epsilon^{bc}\bar{N}^{d}(u^{\mu}f_{-}^{\nu\lambda})^{be}D_{\mu}(\gamma_{\nu}\gamma_{5}T_{\lambda}^{cde}-\gamma_{\lambda}\gamma_{5}T_{\nu}^{cde})]_{+}$
		31	$i \bar{T}^{abc, ho} u^{ad,\mu} f_{-}^{be, u\lambda} \sigma_{ u\lambda} D_{\mu} T_{ ho}^{cde}$	22	$[\epsilon^{bc}\bar{N}^{d}(u^{\mu}f_{-}^{\nu\lambda})^{be}D_{\lambda}(\gamma_{\mu}\gamma_{5}T_{\nu}^{cde}+\gamma_{\nu}\gamma_{5}T_{\mu}^{cde})]_{+}$
				23	$[\epsilon^{bc}\bar{N}^{d}u^{be,\mu}f_{-}^{df,\nu\lambda}D_{\lambda}(\gamma_{\mu}\gamma_{5}T_{\nu}^{cef}-\gamma_{\nu}\gamma_{5}T_{\mu}^{cef})]_{+}$
				24	$[\epsilon^{bc}\bar{N}^{d}u^{be,\mu}f_{-}^{df,\nu\lambda}D_{\mu}(\gamma_{\nu}\gamma_{5}T_{\lambda}^{cef}-\gamma_{\lambda}\gamma_{5}T_{\nu}^{cef})]_{+}$
				25	$[\epsilon^{bc}\bar{N}^{d}u^{be,\mu}f_{-}^{df,\nu\lambda}D_{\lambda}(\gamma_{\mu}\gamma_{5}T_{\nu}^{cef}+\gamma_{\nu}\gamma_{5}T_{\mu}^{cef})]_{+}$
				26	$[\varepsilon_{\mu\nu\lambda\rho}\epsilon^{bc}N^{d}(u^{\mu}f^{\nu\lambda}_{-})^{bc}T^{cde,\rho}]_{+}$
				27	$[\varepsilon_{\mu u\lambda ho}\epsilon^{bc}N^{d}u^{be,\mu}f_{-}^{dt,\nu\lambda}T^{cef, ho}]_{+}$
18	$ar{\psi} abla_{\mu}f_{-}^{\mu u}\gamma_{ u}\gamma_{5}\psi$	32	$ar{\mathcal{T}}^{{\it abc}, ho}(abla_{\mu}f_{-}^{\mu u})^{{\it ae}}\gamma_{ u}\gamma_{5}\mathcal{T}^{{\it bce}}_{ ho}$	28	$[\epsilon^{bc} N^d (abla_\mu f^{\mu u})^{be} T_ u^{cde}]_+$
				29	$[i\epsilon^{bc}N^d(abla^\mu f^{ u\lambda})^{be}\sigma_{\mu u}T_\lambda^{cde}]_+$
19	$\psi \langle u^{\mu} \tilde{\chi}_{+} \rangle \gamma_{\mu} \gamma_{5} \psi$	33	$T^{abc, ho}\langle u^{\mu} ilde{\chi}_{+} angle \gamma_{\mu}\gamma_{5}T^{abc}_{ ho}$		
20	$\psi \langle \chi_+ angle u^\mu \gamma_\mu \gamma_5 \psi$	34	$T_{-}^{abc, ho}\langle\chi_{+} angle u^{ae,\mu}\gamma_{\mu}\gamma_{5}T_{ ho}^{abc}$	30	$[\epsilon^{bc} N^d \langle \chi_+ \rangle u^{be,\mu} T^{cde}_{\mu}]_+$
		35	${\cal T}^{{\it abc}, ho}{\it u}^{{\it ad},\mu} ilde{\chi}^{{\it be}}_+\gamma_\mu\gamma_5{\cal T}^{{\it cde}}_ ho$	31	$[\epsilon^{bc} N^d (u^\mu \tilde{\chi}_+)^{be} T^{cde}_\mu]_+$
		Ĵ	2000	32	$[\epsilon^{bc} N^d u^{be,\mu} \tilde{\chi}^{df}_+ T^{cef}_\mu]_+$
21	$i\psi { ilde \chi}^{\mu} \gamma_{\mu} \gamma_5 \psi$	36	$iT^{abc ho}_{-}(\tilde{\chi}^{\mu}_{-})^{ae}\gamma_{\mu}\gamma_{5}T^{bce}_{ ho}$	33	$[i\epsilon^{bc} {\sf N}^d (ilde{\chi}^\mu)^{be} {\sf T}^{cde}_\mu]_+$
22	$i\psi\langle\chi^{\mu}_{-} angle\gamma_{\mu}\gamma_{5}\psi$	37	$iT^{abc,\rho}\langle\chi^{\mu}_{-}\rangle\gamma_{\mu}\gamma_{5}T^{abc}_{\rho}$		
23	$[i\psi u^{\mu} ilde{\chi}_{-} D_{\mu}\psi]_{+}$	38	$[iT^{abc, ho}(u^{\mu} ilde{\chi}_{-})^{ae}D_{\mu}T^{bce}_{ ho}]_{+}$		

强子与夸克层次 LEC 关系

Chiral order	Group	$\mathcal{L}_{\pi\Delta\Delta} \Leftrightarrow \mathcal{L}_{\pi qq}$	$\mathcal{L}_{\pi N\Delta} \Leftrightarrow \mathcal{L}_{\pi q q}$
$\mathcal{O}(p^1)$	1	$e_1^{(1)} = -rac{3}{2}g_A^q.$	$f_1^{(1)} = k_1 g_A^q.$
$\mathcal{O}(p^2)$	1	$\hat{e}_{1}^{(2)} = -3\beta_{1}^{(2)}, \ \hat{e}_{2,4}^{(2)} = 0, \ \hat{e}_{3}^{(2)} = -6k_{5}\beta_{1}^{(2)};$	$\hat{f}_1^{(2)} = 0.$
	2	$\hat{e}_{5}^{(2)} = -3\beta_{2}^{(2)};$	$\hat{f}_2^{(2)} = 2 k_2 eta_2^{(2)}$
	3	$\hat{e}_{6}^{(2)}=-3eta_{3}^{(2)}$, $\hat{e}_{7}^{(2)}=0$;	
	4	$\hat{e}_{8}^{(2)} = -3\beta_{4}^{(2)}, \ \hat{e}_{9}^{(2)} = -3\beta_{5}^{(2)};$	$\hat{f}_{3}^{(2)} = 2k_2eta_4^{(2)}.$
	5	$\hat{e}_{10}^{(2)} = -3\beta_6^{(2)}, \ \hat{e}_{11}^{(2)} = -3\beta_7^{(2)}.$	
$\mathcal{O}(\pmb{p}^3)$	1	$\hat{e}_1^{(3)} = -3\beta_1^{(3)}, \ \hat{e}_2^{(3)} = -3\beta_2^{(3)}, \ \hat{e}_3^{(3)} = -3\beta_3^{(3)}, \ \hat{e}_{4.5.8}^{(3)} = 0,$	$\hat{f}_1^{(3)} = 2k_1eta_1^{(3)}, \ \hat{f}_2^{(3)} = 2k_1eta_2^{(3)},$
		$\hat{e}_{6}^{(3)} = -3k_{6}\beta_{2}^{(3)}, \ \hat{e}_{7}^{(3)} = -3k_{6}(\beta_{1}^{(3)} + \frac{1}{2}\beta_{2}^{(3)});$	$\hat{f}_{3,4}^{(3)} = 0, \ \hat{f}_5^{(3)} = k_3(\beta_1^{(3)} - \beta_2^{(3)});$
	2	$\hat{e}_{9}^{(3)} = -3\beta_{4}^{(3)}$, $\hat{e}_{10}^{(3)} = -3\beta_{5}^{(3)}$, $\hat{e}_{11}^{(3)} = 0$;	$\hat{f}_6^{(3)} = 2k_1\beta_4^{(3)}, \ \hat{f}_7^{(3)} = 2k_1\beta_5^{(3)}, \ \hat{f}_8^{(3)} = 0;$
	3	$\hat{e}^{(3)}_{12} = -3eta^{(3)}_6;$	
	4	$\hat{e}_{13}^{(3)} = -3eta_7^{(3)};$	
	5	$\hat{e}_{14}^{(3)}=-3eta_{8}^{(3)};$	$\hat{f}_{9}^{(3)} = 4k_4eta_6^{(3)}, \ \hat{f}_{10}^{(3)} = 0;$
	6	$\hat{\pmb{e}}_{15}^{(3)}=-3eta_{9}^{(3)}$, $\hat{\pmb{e}}_{16}^{(3)}=-3eta_{10}^{(3)}$, $\hat{\pmb{e}}_{17}^{(3)}=-3eta_{11}^{(3)}$,	$\hat{f}_{11}^{(3)}=2k_1eta_9^{(3)},\;\hat{f}_{12,13,15}^{(3)}=0,$
		$\hat{\pmb{e}}_{18}^{(3)}=6\pmb{k}_7\pmb{m}_{\Delta}eta_{11}^{(3)}$, $\hat{\pmb{e}}_{19}^{(3)}=-rac{3}{2}\pmb{k}_6eta_9^{(3)}$,	$\hat{f}_{14}^{(3)}=2 \textit{k}_{3}\textit{m}_{\Delta}eta_{10}^{(3)}$, $\hat{f}_{16}^{(3)}=-\textit{k}_{3}eta_{9}^{(3)}$;
		$\hat{f e}^{(3)}_{20,21}=0$, $\hat{f e}^{(3)}_{22}=6{m k_7}{m m_\Delta}\hat{m eta}^{(3)}_{10}$;	
	7	$\hat{m{e}}_{23}^{(3)}=-3eta_{12}^{(3)}$, $\hat{m{e}}_{24}^{(3)}=-3eta_{13}^{(3)}$;	
	8	$\hat{ extbf{e}}_{25}^{(3)} = - 3 eta_{14}^{(3)};$	$\hat{f}_{17}^{(3)}=2k_1eta_{14}^{(3)}$, $\hat{f}_{18,19}^{(3)}=0$;
	9	$\hat{m{e}}_{26}^{(3)}=-3eta_{15}^{(3)}$, $\hat{m{e}}_{27}^{(3)}=-3eta_{16}^{(3)}$,	$\hat{f}^{(3)}_{20,21,23-27}=0$, $\hat{f}^{(3)}_{22}=4k_4eta^{(3)}_{15}$;
		$\hat{\pmb{e}}_{28}^{(3)}=-3eta_{17}^{(3)}$, $\hat{\pmb{e}}_{29}^{(3)}=-3\pmb{k}_5eta_{15}^{(3)}$, $\hat{\pmb{e}}_{30,31}^{(3)}=0$;	toppenduue Anderson on toppen and toppen ou
	10	$\hat{\pmb{e}}_{32}^{(3)}=-3eta_{18}^{(3)};$	$\hat{f}_{28}^{(3)}=2k_1eta_{18}^{(3)}$, $\hat{f}_{29}^{(3)}=2k_3eta_{18}^{(3)}$;
	11	$\hat{\pmb{e}}_{33}^{(3)}=-3eta_{19}^{(3)}$, $\hat{\pmb{e}}_{34}^{(3)}=-3eta_{20}^{(3)}$, $\hat{\pmb{e}}_{35}^{(3)}=0$;	$\hat{f}_{30}^{(3)}=2k_1eta_{20}^{(3)}$, $\hat{f}_{31,32}^{(3)}=0$;
	12	$\hat{m{e}}_{36}^{(3)}=-3eta_{21}^{(3)}$, $\hat{m{e}}_{37}^{(3)}=-3eta_{22}^{(3)}$;	$\hat{f}^{(3)}_{33}=2$ k $_1eta^{(3)}_{21}$
	13	$\hat{e}_{38}^{(3)} = -3eta_{23}^{(3)}.$	

30

\blacklozenge With structure correspondences, obtain LEC relations up to $\mathcal{O}(p^3)$ in baryon ChPT using χ QM.

Find several structure correspondences for the case including $\Delta(1232)$ and multiplication factors (k_i) are introduced.

 \bullet Ongoing work: heavy quark hadron case and further studies of k_i .

Thanks for your attention!