Dark Sector Effective Field Theory

Based on the recent work: Jin-Han Liang, Yi Liao, XDM, Hao-Lin Wang, 2309.12166

- 华南师范大学
 - 马小东
- 第八届手征有效场论研讨会 2023.10.27-10.31,开封

Outline

Introduction

Dark sector effective field theory (DSEFT)

Phenomenologies

• Summary

2

Evidence of the DM

- Bullet Cluster

 Galaxy rotation curves Gravitational lensing

CMB power spectrum Structure formation N-body simulation

Other beyond SM physics facts

Neutrino oscillation => neutrino mass Dark energy Baryon asymmetry of the Universe •Anomalies: τ_{neutron} , CDF m_W , muon g - 2, ...

Strong CP problem Higgs hierarchy Cosmological constant •Quantum gravity

.....

https://lappweb.in2p3.fr/neutrinos/aoscillanim.html

BSM New Physics

- DM abundance $\approx 4 \times SM$ contribution;
- Strong constraints on heavy dark matter particles;
- Light DM are more viable, usually accompanied by other light degrees of freedom.

Why dark sector?

Bottom-up approach — EFT

Most processes searching for DM effects are at low energy, far below the EW scale: DM (in-) direct detection

EFT framework

Merit: Model independent study of NP effects for low energy observables

The ingredients of the DSEFT

- LEFT framework with symmetry: $SU(3)_c \times U(1)_{em}$
- New light ones:

- Power counting: canonical dimension d
- Range: $E \ll \Lambda_{\rm FW}$

• SM Fields: $\Psi = \{u, d, s, c, b; e, \mu, \tau\}; \nu_L = \{\nu_{eL}, \nu_{\mu L}, \nu_{\tau L}\}; F, G$

scalar: ϕ , S; fermion: χ , ψ ; vector: X, V

SM+ a single particle

- SM + scalar: ALPEFT = SM+ axion-like particle
- SM + fermion: nuSMEFT = SM + sterile neutrino
- SM + vector: dark photon EFT = SM + dark photon
- DMEFT: DM + a stable Z_2 DM particle (spin-0, 1/2, 1, 3/2)

SM+ two different particles

- (1) scalar-scalar-SM ($\phi S SM$);
- (2) fermion-fermion-SM ($\chi \psi SM$);
- (3) vector-vector-SM (X V SM);
- (4) scalar-fermion-SM ($\phi \chi SM$);
- (5) scalar-vector-SM ($\phi X SM$);
- (6) fermion-vector-SM ($\chi X SM$).

SMEFT framework:

Y. Liao, XDM, 1612.04527, J.-H. Yu et al, 2105.09329

I. Brivio et al, 1701.05379 J. Brod et a;, 1710.10218

J. C. Criado et al, 2104.14443

J. Aebischer et al, 2202.06968 H. Song, H. Sun, J.-H. Yu, 2305.16770, 2306.05999. Grojean, J. Kley, Y. Yao, 2307.08563.

LEFT framework:

M. Bauer et al, 2012.12272 R. Harnik, G. D. Kribs, 0810.5557 J. Fan, M. Reece, L.-T. Wang, 1008.1591] E. Del Nobile, F. Sannino, 1102.3116] R. Ding, Y. Liao, 1201.0506 J. Kumar, D. Marfatia, 1305.1611] T. Alanne, F. Goertz. 1712.07626 C. Arina, J. Hajer, P. Klos, 2105.06477 X-G. He, XDM, G. Valencia, 2209.05223

With the light one as DM candidate

Our work 2309.12166

Techniques to reach the non-redundant operators

- Integration by parts(IBP): $0 \stackrel{!}{=} D(\mathcal{Q}_1 \mathcal{O}_2) = D(\mathcal{Q}_1) \mathcal{O}_2(\checkmark) + \mathcal{Q}_1 D(\mathcal{O}_2)(\times), \cdots$
- Fierz identity(FI): rearrangement of the fermion bilinears:

$$(\overline{\Psi_{1L}}\Psi_{2R})(\overline{\Psi_{3R}}^{C}\Psi_{4R}) = -(\overline{\Psi_{1L}}\Psi_{3R})(\overline{\Psi_{4R}}^{C}\Psi_{2R}) - (\overline{\Psi_{1L}}\Psi_{4R})(\overline{\Psi_{2R}}^{C}\Psi_{3R}), \cdots$$

GI): $(T^{A})_{ab}(T^{A})_{cd} = \frac{1}{2}\delta_{ad}\delta_{bc} - \frac{1}{2N}\delta_{ab}\delta_{cd}, \cdots$

$$(\overline{\Psi_{1L}}\Psi_{2R})(\overline{\Psi_{3R}}^{C}\Psi_{4R}) = -(\overline{\Psi_{1L}}\Psi_{3R})(\overline{\Psi_{4R}}^{C}\Psi_{2R}) - (\overline{\Psi_{1L}}\Psi_{4R})(\overline{\Psi_{2R}}^{C}\Psi_{3R}), \cdots$$

Group identity (GI): $(T^A)_{ab}(T^A)_{cd} = \frac{1}{2}\delta_{ad}\delta_{bc} - \frac{1}{2N}\delta_{ab}\delta_{cd}, \cdots$

- Schouten identity (SI): $\epsilon_{ij}\epsilon_{kl} = \epsilon_{il}\epsilon_{kj} \epsilon_{ik}\epsilon_{lj}$, …
- **Dirac gamma matrix(DG)**: $\sigma_{\mu\nu}P_{\pm} = \mp \frac{1}{2}i\epsilon_{\mu\nu\rho\sigma}\sigma^{\rho\sigma}P_{\pm}, \cdots$
- Bianchi identity (BI): $D_{\nu}\tilde{X}^{\mu\nu} = 0$.

• Equation of motion(EoM) & Field redefinition: $iD_{\mu}\gamma^{\mu}Q(\times) = Y_{\mu}u\tilde{H}(\checkmark) + Y_{d}dH(\checkmark), \cdots$

9

Classification of all DSEFT operators

Dimension	scalar-scalar-SM	fermion-fermion-SM	vector-vector-SM	scalar-fermion-SM	scalar-vector-SM	fermion-vec
Dim 4			FXV	$(\overline{\nu_L}\chi)\phi + h.c.$		$(\overline{\nu_L}\chi)X +$
Dim 5	$(\overline{\Psi}\Psi)\phi S$	$(\overline{\chi}\psi)F$	$(\overline{\Psi}\Psi)XV$		<i>FXφD</i> (ΨΨ) <i>Xφ</i>	$(\overline{\nu_L}\chi)XD$ +
Dim 6	(ΨΨ) <i>φSD</i>	(<i>\overline{\chi}\psi\psi\</i>)(\overline{\Psi}\Psi)	$FXVD^{2}$ $F^{2}XV, G^{2}XV$ $(\overline{\Psi}\Psi)XVD$	$(\overline{\nu_L}\chi)\phi F + h.c.$	(ΨΨ) <i>XφD</i>	$(\overline{\nu_L}\chi)XF +$
Dim 7	$(\overline{\Psi}\Psi)\phi SF$ $(\overline{\Psi}\Psi)\phi SG$ $(\overline{\Psi}\Psi)\phi SD^2$	$(\overline{\chi}\psi)F^{2}$ $(\overline{\chi}\psi)G^{2}$ $(\overline{\chi}\psi)(\overline{\Psi}\Psi)D$	$(\overline{\Psi}\Psi)XVD^2$ $(\overline{\Psi}\Psi)FXV$ $(\overline{\Psi}\Psi)GXV$	$(\overline{\nu_L}\chi)\phi FD$ $(\overline{\Psi}\Psi)(\overline{\nu_L}\chi)\phi + h.c.$ $(\overline{du})(\overline{\chi}\ell)\phi$ $(\overline{du})(\overline{\chi}\ell)\phi$	$X\phi F^2 D, X\phi G^2 D$ $(\overline{\Psi}\Psi)FX\phi, (\overline{\Psi}\Psi)GX\phi$ $(\overline{\Psi}\Psi)X\phi D^2$	$(\overline{\nu_L}\chi)XFD$ $(\overline{\Psi}\Psi)(\overline{\nu_L}\chi)X$ $(\overline{\chi}\ell)(\overline{du})X$ $(\overline{\chi}u)(dd)X$

Phenomenologies

11

Exotic vector DM interaction

 $F^{\mu}_{\nu}X_{\mu\rho}V^{\nu\rho}, \quad \tilde{F}^{\mu}_{\nu}X_{\mu\rho}V^{\nu\rho}$

J. Aebischer et al, 2202.06968

Shao-Feng Ge, XDM, Pedro Pasquini, 2104.03276

The dark axion portal can surprisingly save the ALP and dark photon for explaining the muon anomalous magnetic moment.

Fermionic absorption DM on electron or nuclear target

$$(\overline{e}\Gamma e)(\nu\Gamma\chi), \quad (\overline{q}\Gamma q)(\nu\Gamma\chi)$$

• Recoil energy in free case:

$$T_r \approx \frac{m_{\chi}^2}{2(m_{\chi} + m_e)} \approx 8 \,\text{keV} \left(\frac{m_{\chi}}{100 \,\text{keV}}\right)^2$$

• Unique signature in D.D. exp.:

Peak-type energy spectrum

Shao-Feng Ge, Xiao-Gang He, XDM and Jie Sheng, 2201.11497

Neutron dark decay mode for its lifetime anomaly

https://www.icepp.s.u-tokyo.ac.jp/en/information/20210129.html

One solution: additional neutron dark decay mode

$$\Gamma_n^{\text{dark}} = \Gamma_n^{\text{tot}} - \Gamma_n^\beta = \tau_n^{-1} - \tau_n^\beta$$

 $\tau_{n,\beta}^{-1} = (8.184 \pm 1.688) \times 10^{-30} \,\text{GeV}$.

Fermion – scalar : $n \rightarrow \chi + \phi$

 $\mathcal{O}_{\phi\gamma}^{\mathrm{LR}} = \epsilon^{ijk} (\bar{\chi} P_L d_i) (\overline{d_i^{\mathrm{C}}} P_R u_k) \phi,$ $\mathcal{O}_{dv}^{\mathrm{RL}} = \epsilon^{ijk} (\overline{\chi} P_R d_i) (\overline{d_i^{\mathrm{C}}} P_L u_k) \phi,$ $\mathcal{O}_{\phi\gamma}^{\mathrm{LL}} = \epsilon^{ijk} (\bar{\chi} P_L d_i) (\overline{d_i^{\mathrm{C}}} P_L u_k) \phi,$ $\mathcal{O}_{\phi\gamma}^{\mathrm{RR}} = \epsilon^{ijk} (\bar{\chi} P_R d_i) (\overline{d_i^{\mathrm{C}}} P_R u_k) \phi \,.$

DSEFT

- A natural framework to induce neutron dark decay Fermion – vector : $n \rightarrow \chi + X$
 - $\mathcal{O}_{\gamma X}^{\text{LLL}} = \epsilon^{ijk} (\overline{\chi} \gamma_{\mu} P_L d_i) (\overline{d_i^{\text{C}}} P_L u_k) X^{\mu},$ $\mathcal{O}_{\gamma X}^{\text{RRR}} = \epsilon^{ijk} (\overline{\chi} \gamma_{\mu} P_R d_i) (\overline{d_i^{\text{C}}} P_R u_k) X^{\mu},$ $\mathcal{O}_{\gamma X}^{\text{LRR}} = \epsilon^{ijk} (\overline{\chi} \gamma_{\mu} P_L d_i) (\overline{d_i^{\text{C}}} P_R u_k) X^{\mu}(\text{A}),$ $\mathcal{O}_{\gamma X}^{\text{RLL}} = \epsilon^{ijk} (\overline{\chi} \gamma_{\mu} P_R d_i) (\overline{d_i^{\text{C}}} P_L u_k) X^{\mu}(\text{A}),$ $\mathcal{O}_{\gamma X1}^{\text{LLR}} = \epsilon^{ijk} (\overline{\chi} P_L d_i) (\overline{d_i^{\text{C}}} \gamma_\mu P_R u_k) X^\mu,$ $\mathcal{O}_{\chi X1}^{\text{RRL}} = \epsilon^{ijk} (\overline{\chi} P_R d_i) (\overline{d_i^{\text{C}}} \gamma_{\mu} P_L u_k) X^{\mu},$ $\mathcal{O}_{vX2}^{\text{LLR}} = \epsilon^{ijk} [(\overline{\chi}P_L d_i)(\overline{u_i^{\text{C}}}\gamma_{\mu}P_R d_k) + (\overline{\chi}P_L u_i)(\overline{d_j^{\text{C}}}\gamma_{\mu}P_R d_k)]X^{\mu}(\text{S}),$ $\mathcal{O}_{\chi X2}^{\text{RRL}} = \epsilon^{ijk} [(\overline{\chi}P_R d_i)(\overline{u_j^{\text{C}}}\gamma_\mu P_L d_k) + (\overline{\chi}P_R u_i)(\overline{d_j^{\text{C}}}\gamma_\mu P_L d_k)]X^{\mu}(\text{S}),$

Nucleon matrix element

Chiral symmetry : $SU(3)_{L} \otimes SU(3)_{R}$ $\mathbf{8}_{\mathrm{L}} \otimes \mathbf{1}_{\mathrm{R}} : \mathcal{O}_{\phi\gamma}^{\mathrm{LL}}, \mathcal{O}_{\gamma\chi}^{\mathrm{LLL}}$ $\mathbf{1}_{\mathrm{L}} \otimes \mathbf{8}_{\mathrm{R}} : \mathcal{O}_{\phi\gamma}^{\mathrm{RR}}, \mathcal{O}_{\gamma\chi}^{\mathrm{RRR}}$ $\mathbf{3}_{\mathrm{L}} \otimes \bar{\mathbf{3}}_{\mathrm{R}} : \mathcal{O}_{\phi\gamma}^{\mathrm{LR}}, \mathcal{O}_{\gamma\chi}^{\mathrm{RLL}}$ $\mathbf{\bar{3}}_{\mathrm{L}} \otimes \mathbf{3}_{\mathrm{R}} : \mathcal{O}_{\phi\gamma}^{\mathrm{RL}}, \mathcal{O}_{\gamma\chi}^{\mathrm{LRR}}$ $\mathbf{6}_{\mathrm{L}} \otimes \mathbf{3}_{\mathrm{R}} : \mathcal{O}_{\chi X 1.2}^{\mathrm{LLR}}(\mathbf{X})$ $\mathbf{3}_{\mathrm{L}} \otimes \mathbf{6}_{\mathrm{R}} : \mathcal{O}_{\chi X 1, 2}^{\mathrm{RRL}}(\mathbf{X})$

Higher order in ChPT power counting

Chiral perturbation theory plus lattice QCD

$$\begin{split} \xi &= \exp\left[\frac{i\sqrt{2}\Pi(x)}{F_{0}}\right],\\ \Pi &= \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^{0} \\ K^{-} & \bar{K}^{0} & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}\\ B &= \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda^{0} & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda^{0} & n \\ \Xi^{-} & \Xi^{0} & -\sqrt{\frac{2}{3}}\Lambda^{0} \end{pmatrix} \end{split}$$

- Chiral transformation: $B \to hBh^{\dagger}$, $\xi \to L\xi h^{\dagger} = h\xi R^{\dagger}$, with $h \in SU(3)_V$
- Spurion or external sources: $\mathscr{P}_{\chi_{\mathbb{L}} \otimes y_{\mathbb{R}}} \sim C_i \overline{\chi} \phi(X)$
- Leading order matching result:

$$\alpha \mathrm{Tr} \left[\mathscr{P}_{\mathbf{3}_{\mathrm{L}} \otimes \bar{\mathbf{3}}_{\mathrm{R}}} \xi^{\dagger} B_{\mathrm{L}} \xi^{\dagger} + \mathscr{P}_{\bar{\mathbf{3}}_{\mathrm{L}} \otimes \mathbf{3}_{\mathrm{R}}} \xi B_{\mathrm{R}} \xi^{\dagger} \right]$$

• Low energy constants: $\alpha = -\beta = -0.0144(3)(21) \, \text{GeV}^3$

Chiral matching

$\xi + \beta \operatorname{Tr} \mathscr{P}_{\mathbf{8}_{\mathrm{L}} \otimes \mathbf{1}_{\mathrm{R}}} \xi B_{\mathrm{L}} \xi^{\dagger} + \mathscr{P}_{\mathbf{1}_{\mathrm{L}} \otimes \mathbf{8}_{\mathrm{R}}} \xi^{\dagger} B_{\mathrm{R}} \xi$

Aoki, Izubuchi, Shintani, Soni: 1705.01338

neutron in the nucleus)

- The kinematic constraint leads the dark particles as **DM candidate**
- DM-neutron annihilation constrair

Super-K: $n \rightarrow \bar{\nu} + \pi^0$

Constraints

 Nuclear stability: requiring the stable nuclei to be not perturbed by these interactions (the **Q-value** of nuclear decay < the **separation energy** for a

937.900 MeV < $M \equiv m_{\gamma} + m_{\phi} < 939.565$ MeV from beryllium

B. Fornal and B. Grinstein, 1801.01124

$$\text{nt: } \chi + n \to \phi + \pi^0, \, \pi^0 \to 2\gamma$$

Super-Kamiokande Collaboration : 1305.4391

Fermion+scalar case as an example

- The DSEFT is introduced in which the effective operators involving two different dark particles coupling to SM fields;
- The effective operators up to dim 7 are constructed for six different categories:

SS-SM, FF-SM, VV-SM, SF-SM, SV-SM, FV-SM

- Interesting phenomenologies are discussed concerning the DM puzzle and experimental anomalies;
- Outlook: explore its rich pheno from other observables as well as their UV completion.

Thank you for your time!