PIONEER: a next-generation pion decay experiment

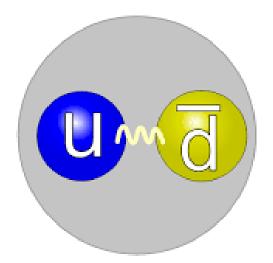
Xin Qian (xqian@bnl.gov) BNL / Stony Brook University On behalf of PIONEER Collaboration

PIONEER Proposal: arXiv:2203.01981

W. Altmannshofer,¹ O. Beesley,² E. Blucher,³ A. Bolotnikov,⁴ S. Braun,² T. Brunner,⁵
D. Bryman,^{6,7} Q. Buat,² L. Caminada,⁸ S. Chen,⁹ M. Chiu,⁴ V. Cirigliano,² S. Corrodi,¹⁰ A. Crivellin,^{8,11} S. Cuen-Rochin,¹² J. Datta,¹³ K. Dehmelt,¹³ A. Deshpande,^{13,4}
A. Di Canto,⁴ L. Doria,¹⁴ J. Dror,¹ M. Escobar Godoy,¹ K. Frahm,¹⁵ A. Gaponenko,¹⁶ A. Garcia,² P. Garg,¹³ G. Giacomini,⁴ L. Gibbons,¹⁷ C. Glaser,¹⁸ D. Göldi,¹⁵ S. Gori,¹ T. Gorringe,¹⁹ C. Hamilton,⁷ C. Hempel,⁷ D. Hertzog,² S. Hochrein,¹⁵ M. Hoferichter,²⁰ S. Ito,²¹ T. Iwamoto,²² P. Kammel,² B. Kiburg,¹⁶ K. Labe,¹⁷ J. Labounty,² U. Langenegger,⁸ C. Lansdell,² C. Malbrunot,⁷ A. Matsushita,²²
S. Mazza,¹ S. Mehrotra,¹³ S. Mihara,²³ R. Mischke,⁷ A. Molnar,¹ T. Mori,²² J. Mott,¹⁶ T. Numao,⁷ W. Ootani,²² J. Ott,¹ K. Pachal,⁷ D. Pocanic,¹⁸ C. Polly,¹⁶ X. Qian,⁴
D. Ries,¹⁴ R. Roehnelt,² T. Rostomyan,⁸ B. Schumm,¹ P. Schwendimann,² A. Seiden,¹
A. Sher,⁷ R. Shrock,¹³ A. Soter,¹⁵ T. Sullivan,²⁴ E. Swanson,² V. Tishchenko,⁴ A. Tricoli,⁴ T. Tsang,⁴ B. Velghe,⁷ V. Wong,⁷ E. Worcester,⁴ M. Worcester,⁴ and C. Zhang⁴ ¹University of California Santa Cruz ² University of Washington ³ University of Chicago ⁴Brookhaven National Laboratory ⁵McGill University ⁶ University of British Columbia ⁷TRIUMF ⁸ Paul Scherrer Institute ⁹Tsinghua University ¹⁰ Argonne National Laboratory ¹¹ University of Zurich ¹² Tecnologico de Monterrey ¹³ Stony Brook University ¹⁴ Johannes Gulenberg University ¹⁵ ETH Zurich ¹⁶ Fermilab ¹⁷ Cornell University ¹⁸ University of Virginia ¹⁹ University of Kentucky ²⁰ University of Bern ²¹ Kilakyshu College ²² University of Tokyo ²³ KEK ²⁴ University of Victoria

Charged PION (π^{\pm})

- Spin-0 pseudoscalar meson (J^P=0⁻)
- Mass = 139.57039 ± 0.00018 MeV [ppm]
- Lifetime = 26.033 ± 0.005 ns [~0.02%]
- Decay Modes:


Umd

Quark model

 $-\pi^+ \rightarrow \mu^+ \nu_{\mu}$ Branching Ratio 99.98770 \pm 0.00004 % $-\pi^+ \rightarrow e^+ \nu_e$ B. R. $(1.230 \pm 0.004) \times 10^{-4}$ [~0.3%] $-\pi^+ \rightarrow \pi^0 \nu_e e^+$ B. R. $(1.036 \pm 0.006) \times 10^{-8}$ [~0.6%] $-\pi^+ \rightarrow e^+ \nu_e e^+ e^-$ B. R. $(3.2 \pm 0.9) \times 10^{-9}$

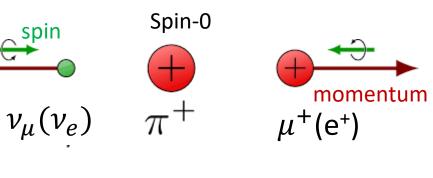
Charged PION (π^{\pm})

- Spin-0 pseudoscalar meson (J^P=0⁻)
- Mass = 139.57039 ± 0.00018 MeV [ppm]
- Lifetime = 26.033 \pm 0.005 ns [~0.02%]
- Decay Modes:

Quark model

$-\pi^+ o \mu^+ \nu_\mu$	B ranching R atio 99.98770 ± 0.00004 %	
$-\pi^+ \rightarrow e^+ \nu_e$	B. R. $(1.230 \pm 0.004) \times 10^{-4}$ [~0.3%]	- alt
$-\pi^+ \rightarrow \pi^0 \nu_e e^+$	B. R. (1.036 \pm 0.006) $\times 10^{-8}$ [~0.6%]	thistalk
$-\pi^+ \rightarrow e^+ \nu_e e^+ e^-$	B. R. $(3.2 \pm 0.9) \times 10^{-9}$	FOR
Taken from PDG	Relevan	3

Pion Leptonic Decays ($\pi e \nu / \pi \mu \nu$)


- Weak decay only involves left-handed (LH) leptons & right-handed (RH) anti-leptons
 - LH: negative helicity at massless limit
 - RH: positive helicity at massless limit
- Standard Model assumes lepton flavor universality
 - Coupling is blind of flavor

$$F := \frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)} \approx \frac{m_e^2}{m_\mu^2} \left(\frac{m_\pi^2}{m_\pi^2}\right)$$

Helicity suppression

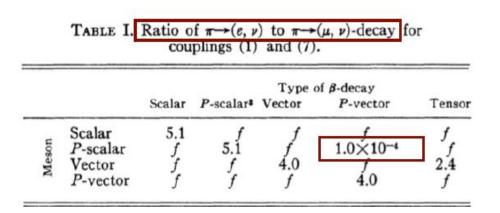
 R^{τ}

 $\Pi^{+} \overset{u}{\underset{d}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{W^{+}}{\overset{Left-handed}{\overset{\nu_{\mu}(\nu_{e})}{\overset{\nu_{\mu}(\nu_{e})}}}}}}$

Right-handed, but Negative helicity

 $1.233 \times$

Left-handed

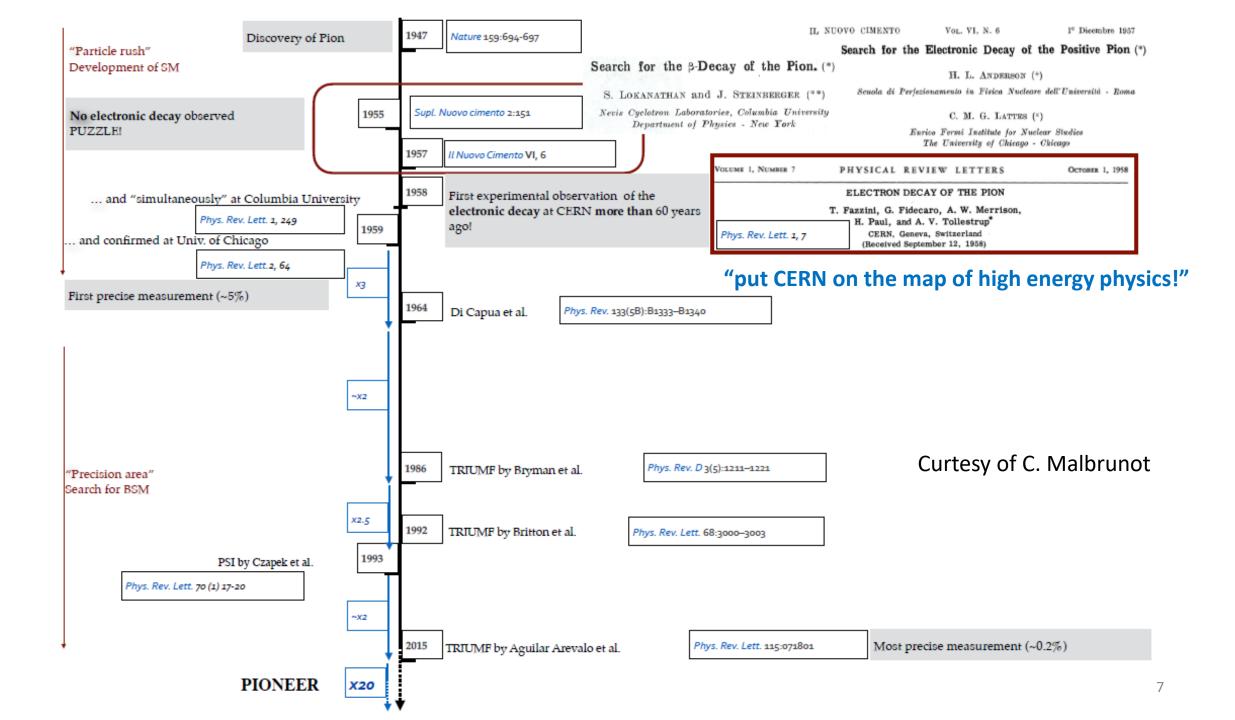

Negative helicity

History of R^{π}

- 1940/50's: Development of V-A structure of weak interaction
- 1950's: Many experimental confirmation of the V-A theory
- 1956/1957: Negative experimental result $R^{\pi} < 10^{-5}$

Note on the Decay of the π -Meson

M. RUDERMAN AND R. FINKELSTEIN California Institute of Technology, Pasadena, California (Received July 25, 1949)


Theory of the Fermi Interaction

R. P. FEYNMAN AND M. GELL-MANN California Institute of Technology, Pasadena, California (Received September 16, 1957)

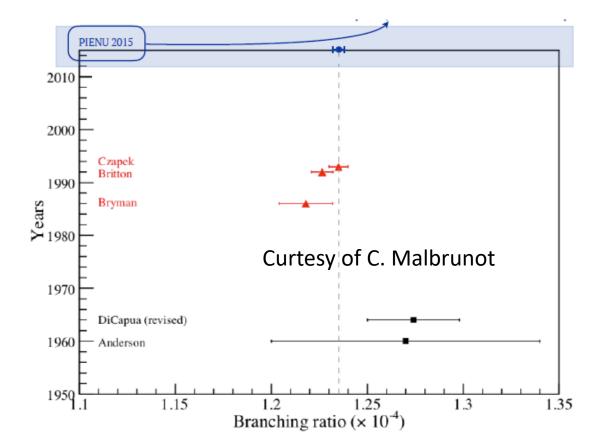
Experimentally¹⁶ no $\pi \rightarrow e + \nu$ have been found, indicating that the ratio is less than 10⁻⁵. This is a very serious discrepancy. The authors have no idea on how it can be resolved.

) vicke this in english, for) bey you to circulate Particularly of the latter work very contract, your - tee Physikalisches Institut das Eide Technischen Hachschule Biorisstrasses 3 Physikalisches Hachschule Jan 22nd, 1957 Sear Telegoy. Letter of W. Pauli to V. Telegdy I Mand you to much for laving react to me all 3 reprints of sec experimental papers. They arrived just in time (yaterday at 5 P.M.) to be used we very collecting between an Older and never testory of the benkring (yorkerday at 8 -5 P. 14.1.) carly you vhy the reaction I ret V Has anybody some new idea, about I had very bruggle with here about violation of the I still don't know, why the reaction $\pi \rightarrow e + \nu$ does not occur. Has anybody some new ideas about it? ollowite. To I said at the and and now will come "le surprise, which Dabe head appeated :-

Her time) was very in very espectations. Acet still I don't verdent and, vling the strong interactions source reflection - und criant (party two arisenes-

Previous R^{π} Experiments

- PIENU @ TRIUMF
- PEN @ PSI
- Several previous experiments


-						
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1.2327 ± 0.0023 OUR AV	ERAGE					
$1.2344 \!\pm\! 0.0023 \!\pm\! 0.0019$	400k	AGUILAR-AR.	15	CNTR	+	Stopping π^+
$1.2346 \pm 0.0035 \pm 0.0036$	120k	CZAPEK	93	CALO		Stopping π^+
$1.2265 \pm 0.0034 \pm 0.0044$	190k	BRITTON	92	CNTR		Stopping π^+
$1.218\ \pm 0.014$	32k	BRYMAN	86	CNTR		Stopping π^+
• • • We do not use the	following d	ata for averages	, fits,	limits, et		•
1.273 ± 0.028	11k	¹ DICAPUA	64	CNTR		
1.21 ± 0.07		ANDERSON	60	SPEC		
¹ DICAPUA 64 has bee	en updated	using the curren	t mea	n life.		

PDG 2018: $R^{\pi} \sim 0.19\%$

PIENU and PEN aims at 0.1% for their final measurements

PIONEER Goal x20 improvement

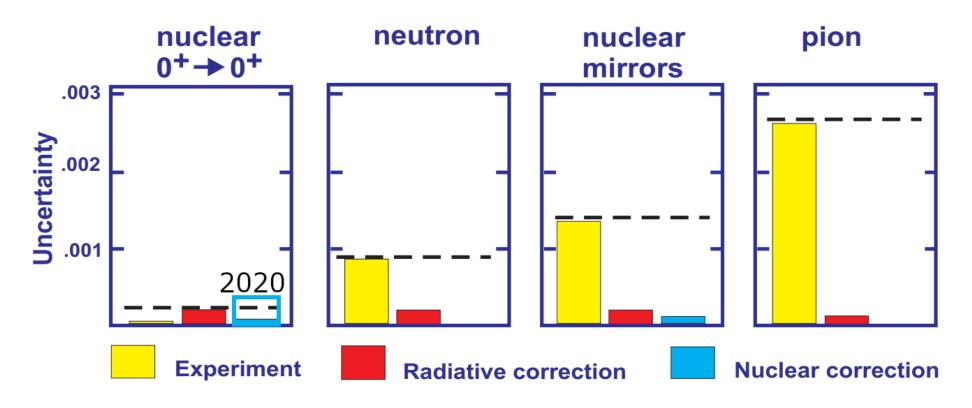
First PINEU result @ 0.2% based on 10% of Data

Pion Beta Decay B. R. (1.036 \pm 0.006) $\times 10^{-8}$

Phase Space Suppression

$$\Gamma_{\pi\beta} = \frac{G_{\mu}^{2} |V_{ud}|^{2}}{30\pi^{3}} \left(1 - \frac{\Delta}{2M_{\pi^{+}}}\right)^{3} \Delta^{5} f(\epsilon, \Delta)(1 + \delta)$$
$$\Delta = M_{\pi^{+}} - M_{\pi^{o}}; \ \epsilon = \left(\frac{m_{e}}{\Delta}\right)^{2}$$
f: Fermi function; \ \delta: loop correction

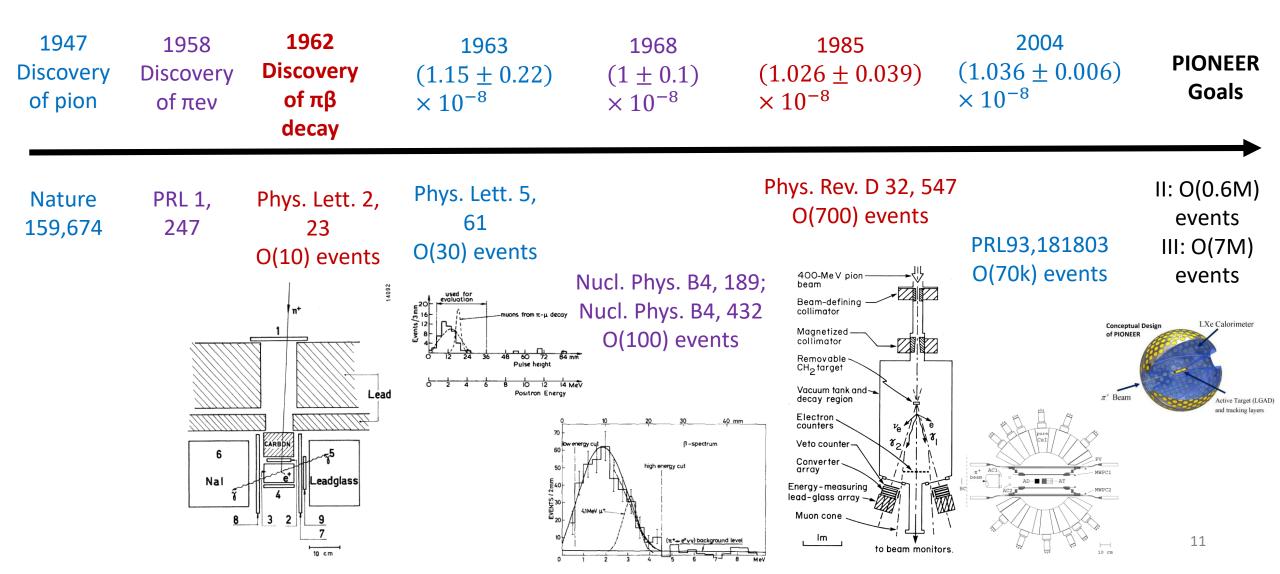
 Analogous to neutron beta decay, but with spin-0 (much simpler hadronic contributions)


• The theoretically cleanest way of measuring V_{ud}

$$\pi^{o}$$

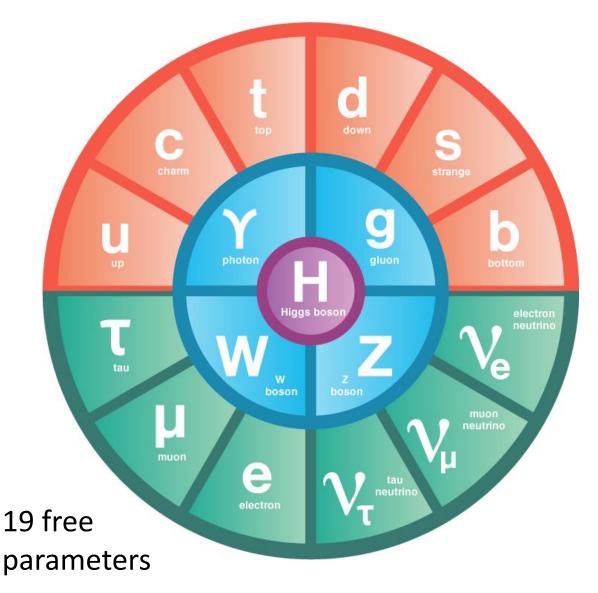
~ 135 MeV
 $\pi^{+}:$ ~139.6 MeV

Measurement of V_{ud}


- Pion (cleanest but hard BR~10⁻⁸)
- Neutron (also need g_A)

- Super allowed $0^+ \rightarrow 0^+$
- T=1/2 mirrors (e.g. ³H & ³He)

Courtesy of Leendert Hayen


Pion Beta Decay Measurements

Why PIONEER?

Standard Model of Particle Physics

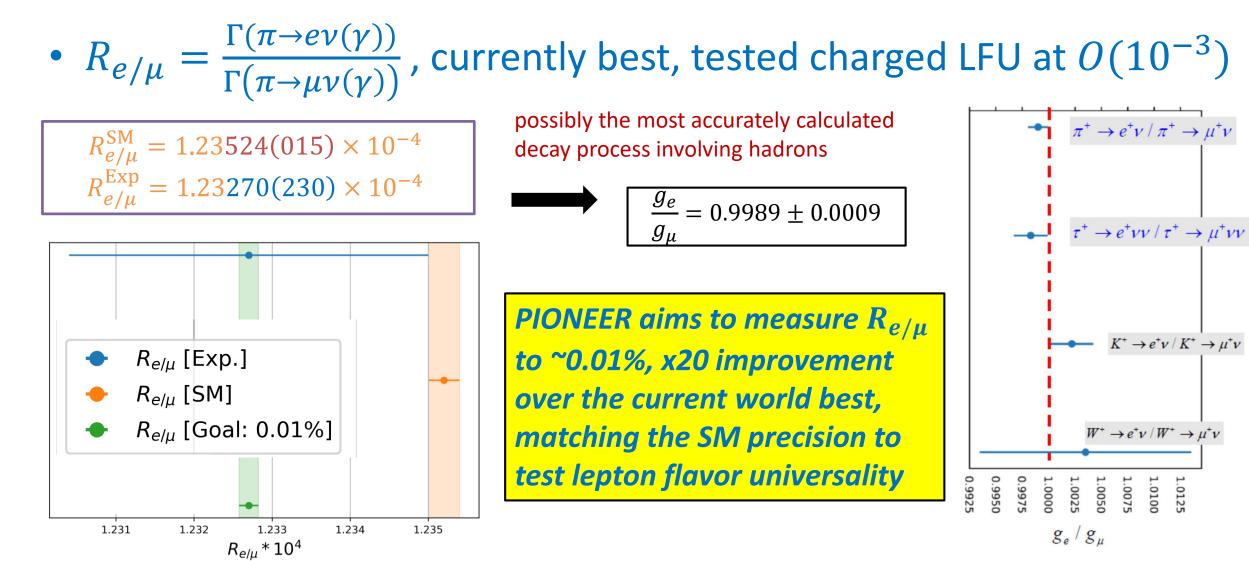
- Direct evidence of physics beyond standard model
 - Neutrino oscillation → non-zero neutrino mass and mixing (19→26-28 parameters)
- Additional evidence of physics beyond standard model
 - Existence of Dark Matter and Dark
 Energy

The main technique: Aim Collider at the Standard Model and try to crack it Warning: evidence of the unbreachable castle ...

Coming up empty

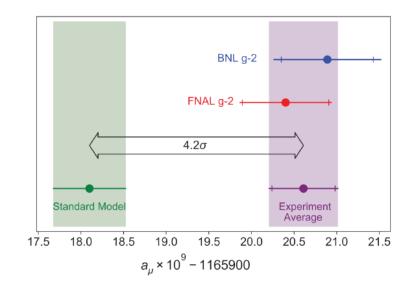
Curtesy of D. Hertzog

What else can we do?

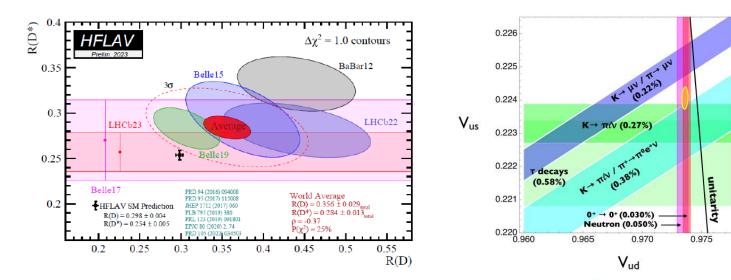


But, there is also an indirect approach: "Quantum tunneling"

Curtesy of D. Hertzog


Physics Motivation I: Testing Lepton Flavor Universality

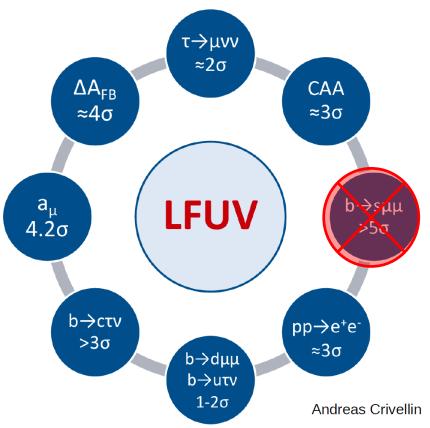
• LFU in SM: the weak coupling "g" is the same for $e/\mu/\tau$ leptons



Some anomalies pointing LFU Violation

- Several new tensions in the flavor sector, hinting toward lepton flavor universality violation (LFUV)
 - $\frac{B \text{ decays: } R(K^*)}{B \rightarrow K^* ee}$, and R(K)(LHCb arXiv:2212.09153)
 - B decays: $R(D^*) = \frac{B \rightarrow D^* \tau \nu}{B \rightarrow D^* l \nu}$, O(10%) deviations at 3-4 σ from LFU
 - Muon g-2: 4.2σ deviation from SM prediction, hint of LFUV compared to electron g-2
 - Cabibbo Angle Anomaly: 2-3σ tension from CKM unitarity from β and K decays, hint of LFUV with modified Wlv couplings

Phys. Rev. Lett. 126 (2021) 141801


arXiv:2111.05338

Test BSM Explanations of LFUV Anomalies

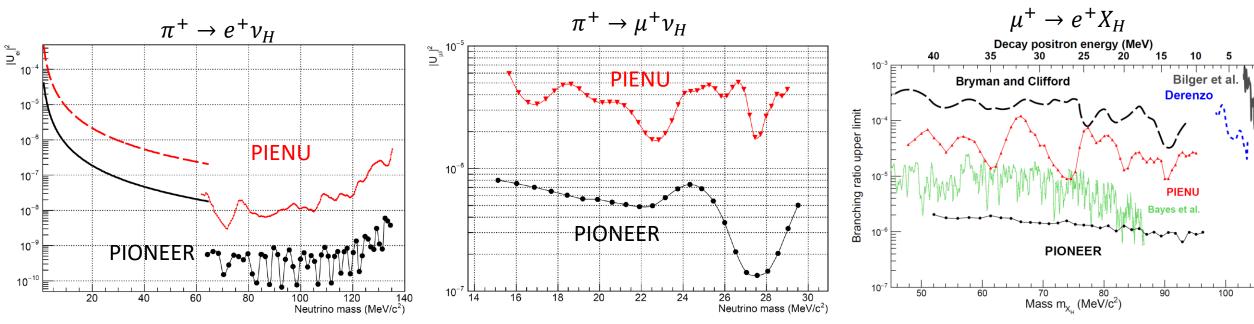
• Precision measurement of $R_{e/\mu}^{\pi}$ is extremely sensitive to presence of new pseudoscalar or scalar couplings

Pseudoscalar interactions

$$\pi = \underbrace{\prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \prod_{i=1}^{n} \frac{1}{1 - \frac{R_{e/\mu}^{New}}{R_{e/\mu}^{SM}}} \sim \mp \frac{\sqrt{2}\pi}{G_{\mu}} \frac{1}{\Lambda_{eP}^{2}} \frac{m_{\pi}^{2}}{m_{e}(m_{d} + m_{u})} \sim (\frac{1TeV}{\Lambda_{eP}})^{2} \times 10^{3} \text{ Marciano...}$$

Test <u>beyond SM physics explanations of LFUV</u> <u>anomalies</u> through sensitivity to quantum effects of new particles up to PeV mass scale

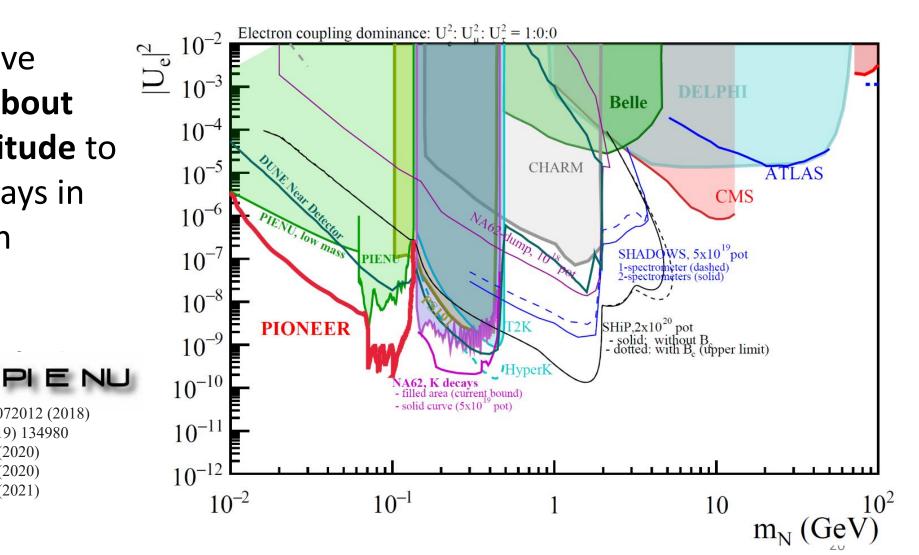
Physics Motivation II: Sensitivity to New Physics


 PIONEER will improve sensitivity by about one order of magnitude to a host of exotic decays, including heavy sterile neutrinos, various light dark sector particles, LFUV decays of muon into light NP particles

> If the mass of heavy neutrinos, which have implications for leptogenesis, are $M_{\nu} = 60 \sim 130 \text{ MeV}/c^2$, additional low energy positron peak can be detected in the $\pi^+ \rightarrow e^+$ energy spectrum

 $\pi^+ \rightarrow e^+ \nu_{\nu}$

R. E. Shrock

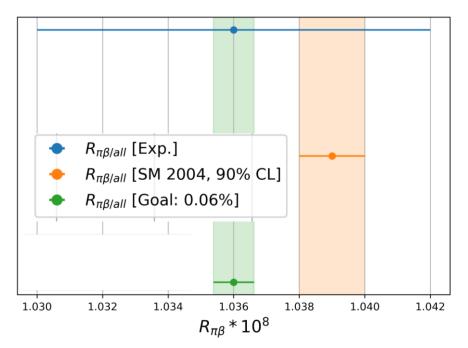


Exotic Searches – Global Experimental Context

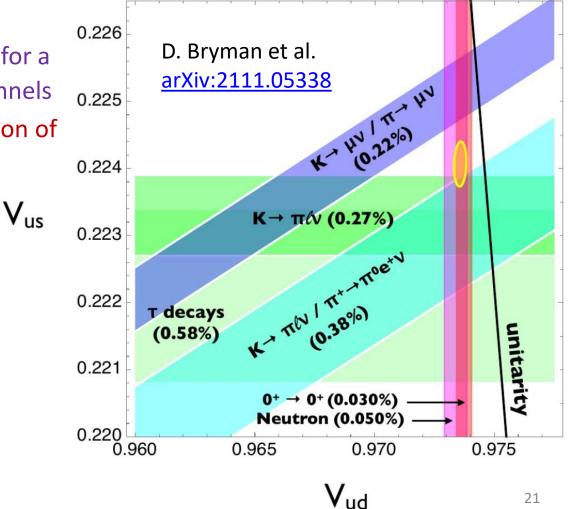
 PIONEER will improve previous limits by about one order of magnitude to a host of exotic decays in the low mass region 1-120 MeV

Example papers published by

A. Aguilar-Arevalo et al. Physical Review D 97(7) 072012 (2018)
A. Aguilar-Arevalo et al. Physics Letters B 798 (2019) 134980
A. Aguilar-Arevalo et al. Phys. Rev. D 102, 012001 (2020)
A. Aguilar-Arevalo et al. Phys. Rev. D 101, 052014 (2020)
A. Aguilar-Arevalo et al. Phys. Rev. D 103, 052006 (2021)



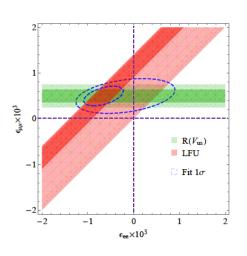
Physics Motivation III: Testing CKM Unitarity


Pion beta decay provides the theoretically cleanest determination of $|V_{ud}|$

 $- R_{\pi\beta}^{Exp} = \frac{\Gamma(\pi^+ \to \pi^0 e\nu(\gamma))}{\Gamma(all)} = (1.036 \pm 0.006) \times 10^{-8}$

- 3-fold improvement in $R_{\pi\beta}$ with $K \rightarrow \pi l \nu(\gamma)$ allows for a 0.2% determination of $|V_{us}/V_{ud}|$ matching axial channels
- 10-fold improvement allows for a 0.02% determination of $|V_{ud}|$, comparable to super-allowed beta decay

~3σ tension in the first-row of CKM unitarity test (CAA: Cabibbo Angle Anomaly)

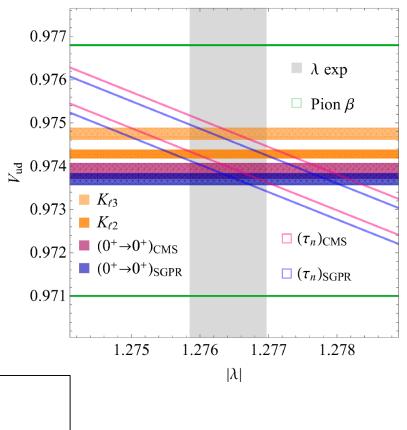

21

Connection between LFUV and CAA?

 Assuming CKM unitarity, V_{ud} (or V_{us}) deduced from K₁₂ and K₁₃ and nuclear beta decay is inconsistent

Is this tension a sign of LFUV ??

Modified Fermi constant in muon decay

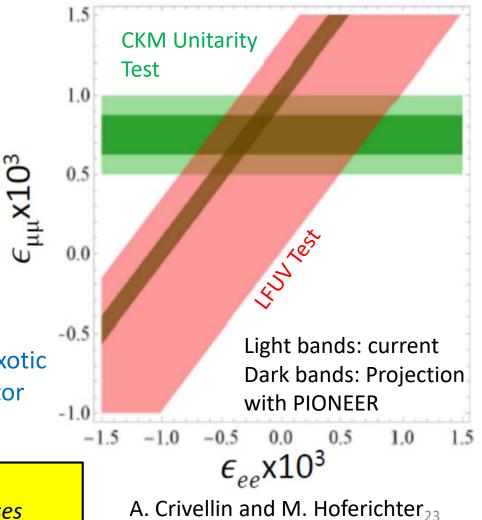


$$rac{1}{ au_{\mu}}=rac{(G_F^{\mathcal{L}})^2m_{\mu}^5}{192\pi^3}(1+\Delta q)(1+arepsilon_{ee}+arepsilon_{\mu\mu})^2$$

Construct ratio Crivellin, MH 2020

$$R(V_{us}) \equiv \frac{V_{us}^{K_{\mu2}}}{V_{us}^{\beta}} \equiv \frac{V_{us}^{K_{\mu2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} = 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu} + \mathcal{O}(\varepsilon^2)$$

 \hookrightarrow LFUV effect enhanced by $(V_{ud}/V_{us})^2 \sim 20!$


 ε_{ij} are possible small corrections to the charged *W*- ℓ -v couplings

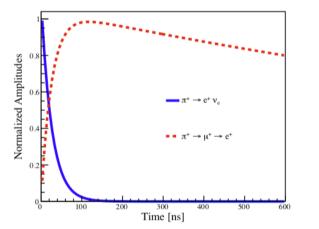
Summary of PIONEER Physics Goals

- Phase I Goals:
 - Measure $R_{e/\mu} = \frac{\Gamma(\pi \to e\nu(\gamma))}{\Gamma(\pi \to \mu\nu(\gamma))}$ to 0.015, matching SM prediction precision
 - Improve e/μ universality test by an order of magnitude
- Phase II (III) Goals:
 - Measure $R_{\pi\beta} = \frac{\Gamma(\pi^+ \to \pi^0 e\nu(\gamma))}{\Gamma(all)}$ to 0.05%
 - Improve CKM unitarity tests by an order of magnitude with $\left|\frac{V_{us}}{V_{ud}}\right| < 0.1\%$ and $|V_{ud}| \sim 0.02\%$
- Parasitic Goals:
 - One order of magnitude improvement in search for a host of exotic decays including heavy sterile neutrinos, various light dark sector particles, LFUV decays of muon into light NP particles

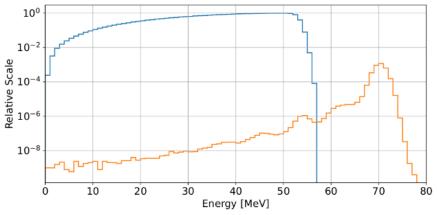
We will focus on phase I, which is already a major challenge; however, the core of the apparatus is designed to accommodate later phases

Modified $Wl\nu$ couplings

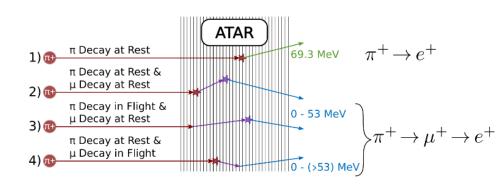
What is PIONEER?


Currently over 80 collaborators from 24 institutions

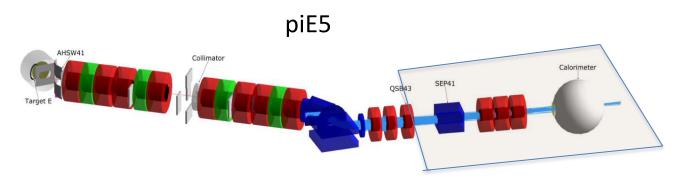
Conceptual Design of PIONEER Phase I


Aims to collect $2 \times 10^8 \pi^+ \rightarrow e^+ \nu$ events at Paul LXe Calorimeter **Conceptual Design** Scherrer Institute (PSI) to measure $R_{e/\mu}$ to 0.01% of PIONEER **Features of** $\pi \to e \nu(\gamma)$ $\pi \to \mu \nu(\gamma)$ Detector stopped π decay $\mu \rightarrow e \nu \nu (\gamma)$ technology **Decay Time** 26 ns (π) 26 ns + 2197 ns (μ) $E_{e+\gamma}$ 69.3 MeV* 0 MeV -- 52.3 MeV (Fast) LXe calo. Pattern Two tracks Three tracks $(\pi + \mu + e)$ Active target π^+ Beam Active Target (LGAD) recognition $(\pi + e)$ (LGAD tech.) and tracking layers

*: there is a long tail at lower energy region



Energy Information



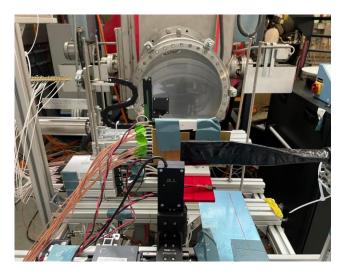
Pattern Recognition Information

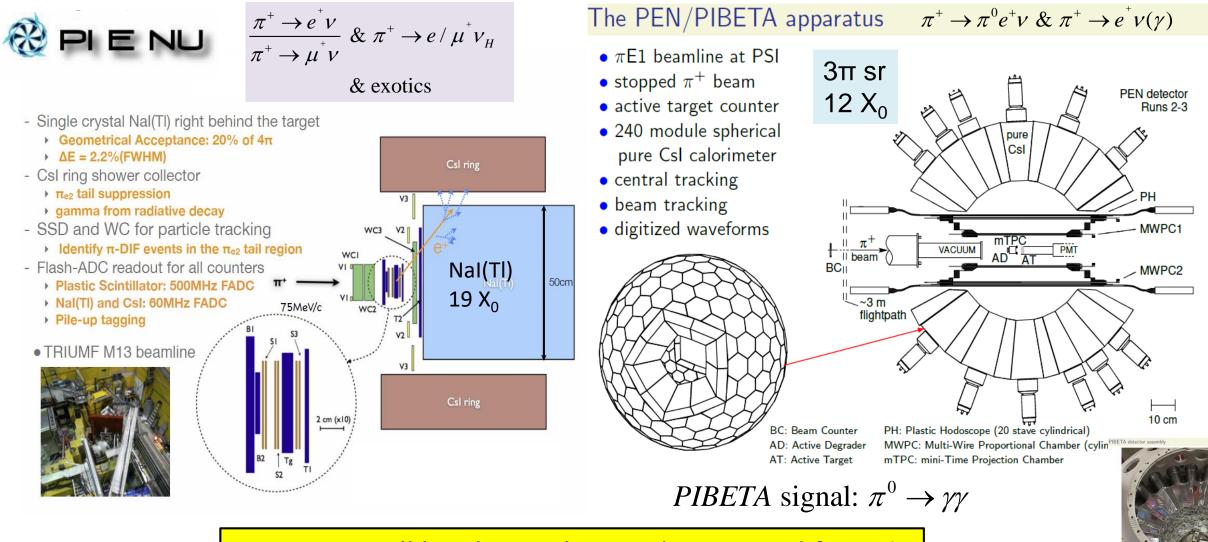
Also, π/μ separation with dE/dx²⁶

Pion Beamline @ PSI

- Specifications:
 - Momentum p=55-70 MeV/c allowing for $E\times B$ separation of π from μ and e
 - Tight beam spot (< 2 cm²) and small divergence
 - Narrow momentum bin (2%) for well defined π stopping location in active target

Beamline Position	$p_{\pi}~({ m MeV}/c)$	π^+ Rate
QSB43	55	6.3
CALO Center	55	1.0
QSB43	75	61.5
CALO Center	75	11.1


X 10⁶ Hz


Phase I $\pi \rightarrow ev$: • π^+ Beam: 55 MeV/c ; $\frac{\Delta p}{p} \sim 2\%$; 3x10⁵ Hz •2 x10⁸ events in 3 "yrs"* $\rightarrow R_{e/\mu} \pm 0.01\%$

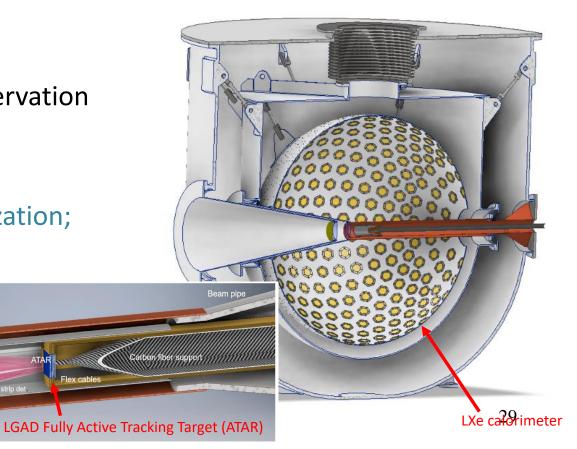
Beam test @ 2022

/../processed/run307/data/subrun0/WD038 8.root 38 12

Two Recent Pion Decay Experiments: PIENU and PEN

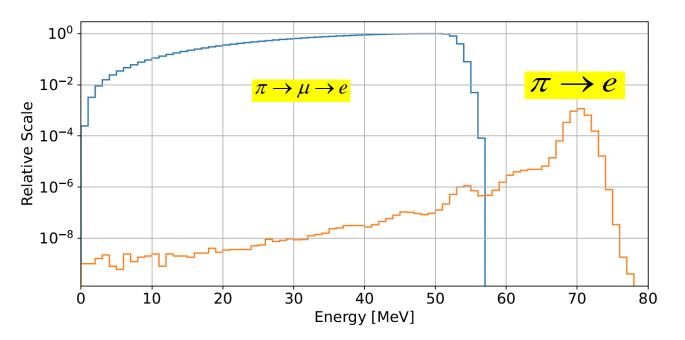
PIONEER will be clearer, larger, deeper, and faster!

PIONEER Detector Concept – best of both worlds


Building on PIENU and PEN/PIBETA experiences: use emerging technologies (LXe, LGAD)

 $(\rightarrow$ Improvements Compared to PIENU)

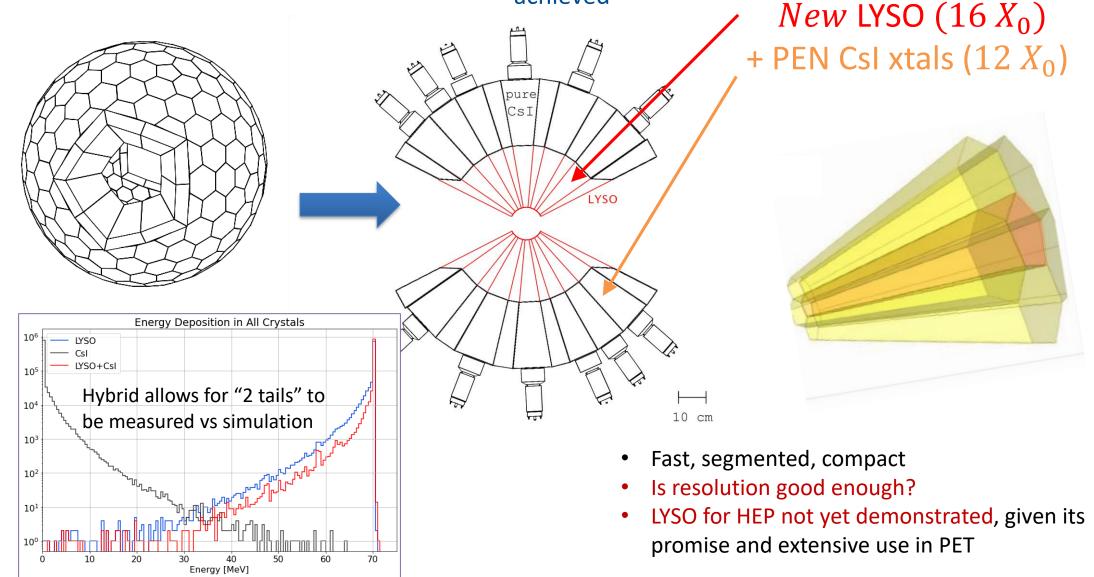
 $\pi^+ \rightarrow e^+ \nu$


- 25 X₀, 3π sr calorimeter \rightarrow Improve uniformity (x5) \rightarrow reduce tail correction (x5) Fast scintillator response (LXe) \rightarrow reduce pile-up uncertainties (x5)
- Active target ("4D") based on LGAD technology
 → reduce tail correction uncertainty (x10)

 Fast pulse shape → allow π → μ → e decay chain observation
- State-of-the-art additional instrumentation
 - + μRWell Tracker; fast triggering; high speed digitization; and pipline DAQ → improve efficiency
- Intense Pion beam at PSI

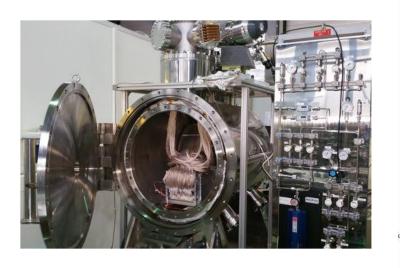
PIONEER Detector Concept: LXe Calorimeter

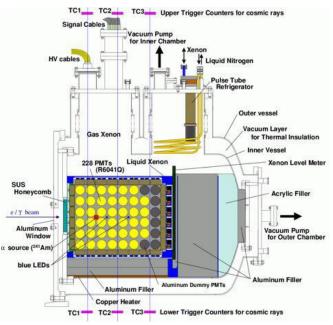
• 25 X₀, 3π sr calorimeter \rightarrow reduce tail correction (x5) \rightarrow Improve uniformity (x5) Fast scintillator response (LXe) \rightarrow reduce pile-up uncertainties (x5)

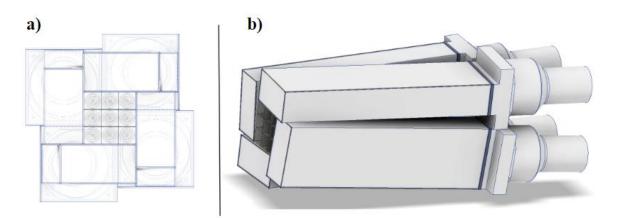


Low energy tail of $\pi \rightarrow e\nu$ is the dominated systematic uncertainties to reach the physics goal of Uncertainty on R_{e/µ}< 0.01%;

- Excellent energy resolution of calorimeter → minimize the tail fraction
- Fast detector response → more resistance to pile-up, and allows for high statistics

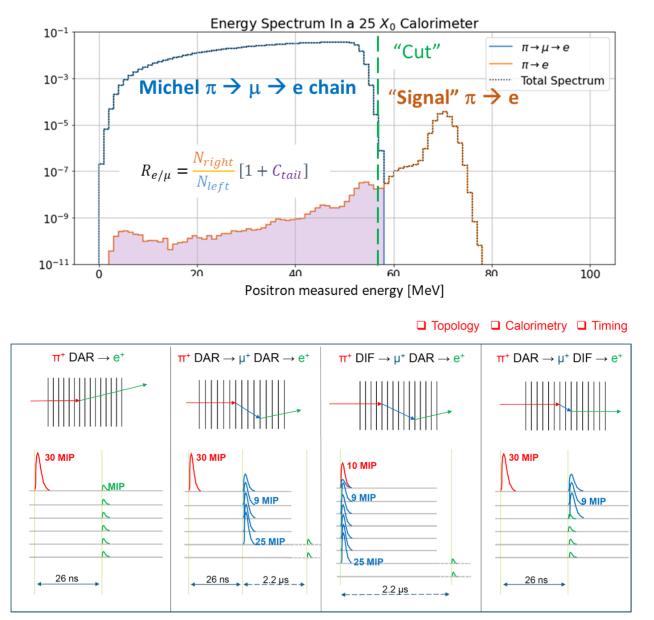

Experience from MEG

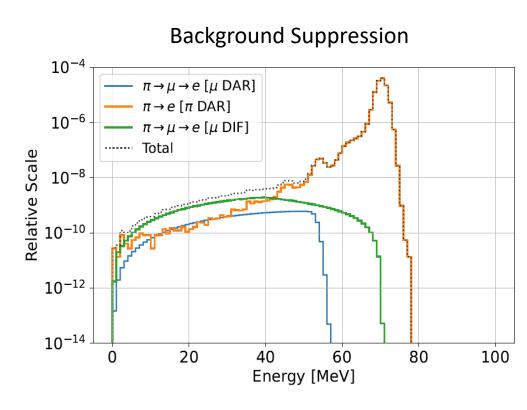

An alternative LYSO based crystal CALO is being investigated to provide a comparison with LXe. To date, no LYSO test array has met our required precision goal, but we are testing new crystals to see if improvements have been achieved



Prototype Detectors (to be tested @ PSI)

- 3x3 LYSO surrounded by NaI(TI)
 Understanding the energy response
- LYSO made by SICCAS in Shanghai
 - 2 weeks beam test in Nov./2023 in collaborating with STJTU team

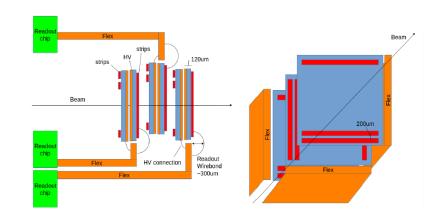




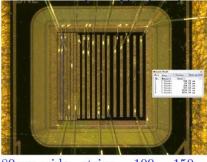
- LXe prototype
 - Based on MEGII prototype
 - Test of window for positron
 - Understanding the energy resolution

In-situ Measurement of the Low-energy Tail




Low energy tail to be measured in situ using ATAR suppression of decay-in-flight backgrounds

• High segmentation allows for pattern recognition and dE/dx information for pion and muon


PIONEER Detector Concept: Active Target (ATAR)

- Active target ("4D") based on low-gain avalanche diode (LGAD) technology
- Requirements:
 - High segmentation, compact with less dead materials, fast collection pion decay chain
 - Large dynamic range for electron (MIP) and stopping pions/muons (x100 MIP)
- Tentative design:
 - 48 layers X/Y strips: 120 um thick
 - 100 strips with 200 um pitch covering 2x2 cm² area
 - Sensors are packed in stack of two with facing HV side and rotate 90°

AC-LGAD prototype (BNL)

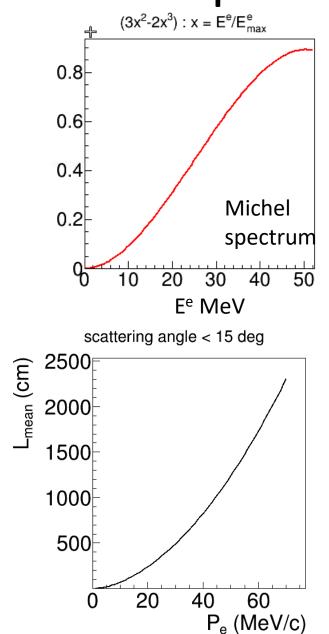
80 μm-wide strips, 100, 150, 200 μm pitch; 5-15μm resolution

Acceptance Difference between πev and $\pi \mu v$

 $(x_{\pi}, y_{\pi}, z_{\pi})$

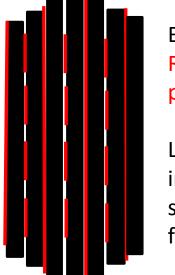
 $(x_{\mu}, y_{\mu}, z_{\mu})$ or (x_{e}, y_{e}, z_{e})

πμe @ 0-52 MeV


 $(E_e, \cos \theta_e, \phi_e)$

- Good position resolution (~100 um) of ATAR leads to smaller acceptance difference between πev and $\pi \mu v$
 - Requiring 5 positron hits in ATAR will enable an energy threshold of 0.5 MeV (2 \times 10^{-6} positrons below this energy for Michel spectrum)
 - Chance for large-angle (15°) Bhabha scattering within 1000
 um in ATAR → Difference of acceptance ~ 2 e-4

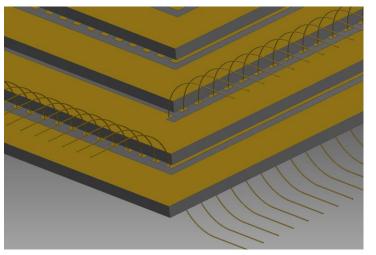
 $(E_e, \cos \theta_e, \phi_e)$

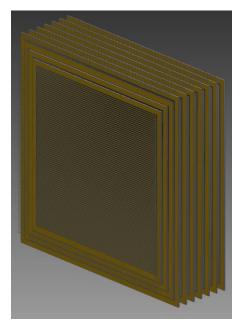

 $(x_{\pi}, y_{\pi}, z_{\pi})$ or (x_e, y_e, z_e)

πev @ 70 MeV

Alternative Designs Under Development

- 2-sided readout with X-Y strips
- Shared strip readout to minimize dead materials
- PiN + slow low-noise electronics (e.g. 5 ns) can be an alternative to the LGAD + fast electronics (< 1 ns)




Bulk (120 um) Readout strip (200 um pitch, 100 width)

Layers are gradually increased/decreased, so that we can readout from the sides

	MIP hit	MIP track (50 hits assumed with 2- sided readout)	10xMIP hit	30xMIP hit
T0 resolution	408 ps	408/sqrt(50) = 58 <u>ps</u>	103 <u>ps</u>	74 <u>ps</u>
Charge resolution (1024 e in 7 ns)	<13.1%	13.1%/sqrt(50) = 1.9%	<1.31 %	<0.44%
2-peak separation @ 3D point of the decay layer	N/A	N/A		ns separation, d hit charge is o small

Example performance for a 5-ns electronics shaping time

$\pi \rightarrow ev$: Estimated Uncertainties

To be verified by simulations and prototype measurements.

	PIENU 2015	PIONEER Estimate	
Error Source	%	%	
Statistics	0.19	0.007	
Tail Correction	0.12	< 0.01	(Calorimeter/ATAR)
t_0 Correction	0.05	$<\!0.01$	(ATAR timing/dE/dx)
Muon DIF	0.05	0.005	(ATAR)
Parameter Fitting	0.05	< 0.01	(Calorimeter/ATAR)
Selection Cuts	0.04	< 0.01	(Calorimeter/ATAR)
Acceptance Correction	0.03	0.003	(Calorimeter)
Total Uncertainty [*]	0.24	\leq 0.01	*Pion lifetime u

* Pion lifetime uncertainty not included Newly proposed measurement at TRIUMF

$\pi^+ \rightarrow \pi^0 e^+ \nu$: Estimated Uncertainties

	PiBeta	PION	EER (Phase II)
Statistics	0.4%	0.1%	
Systematics	0.4%	<0.1%	(ATAR (β), MC, Photonuclear, $\pi \rightarrow e \nu$)
Total	0.64%	0.2%	

Status of PIONEER Experiment

- PIONEER Phase I approved by PSI PAC
 - 2 weeks beam time was allocated for 2022
 - Establish the tune needed in piE5 beam line: categorization/optimization of beam intensity, quality, spot size, momentum bite, background
 - 2 weeks beam time was allocated for 2023 for CALO test
 - Dedicated beam tests for ATAR/CALO in 2024
- Currently over 80 collaborators from 24 institutions
 - Diverse research background: both nuclear and particle physics (U.S and international) communities including PIENU, PEN/beta, MEG/MEGII experiments, as well as experts in rare kaon decay, muon experiments, highenergy collider physics, neutrino physics, PSI scientists, and leading theorists
 - There is much work to do and many open topics: Tracker design, Calorimeter choices, Trigger scheme, simulation efforts, JOIN US!

Timeline and budget

	2024	2025	2026	2027	2028	2029	2030	2031	2032	
	♦ CD0	♦ CD1	◆ CD2/	PSI Shutdown	/ Upgade		♦ CD4			
	LXe 100 L		Active Tgt T	est			Run-1 Run-2	Run-3	Run-4	
R	&D	R&D	Large Prototype	Major construe	ction period	Install		<mark>Phy</mark> s	<mark>Phy</mark> s	<mark>Phy</mark> s

Funding						
Profile	Operating grants and small su	Operating grants and small supplements			~1 ŚM	
	Special R&D award for prototy	pes	LXe procurement			
	Project funds		Photosensors and electronics			
Integral of green			Calibration system			Total:
equals Project		ASIC dev	All electronics	LXe and tanks		~\$40 M
Request	R&D: Active Target,	2nd LXe test		Final install eng	G OPERATION SUPPORT OF GROUPS	
	LXe Prototype and Electronics	Elect / DAQ				

Aims at physics data taking by the end of this decade

Phase-II and Phase III will follow (15+ years program)

$\pi^+ \rightarrow e^+ \nu$

Summary

 $\pi^+ \rightarrow \pi^0 e^+ v$

- PIONEER, a next-generation rare pion decay experiment, aims at testing lepton flavor universality and unitarity of CKM matrix
 - Good discovery potential with emerging anomalies in flavor physics
- PIONEER employs state-of-art detector technologies (LGAD, Noble Liquid calorimetry)
 - Phase I approved at PSI with beam time in 2022 and 2023
 - <u>Rare Pion Decay Workshop (6-October 8, 2022): Overview · Indico (cern.ch)</u>
 - Expected start of data taking in ~5 years time scale with an overall time scale of 15+ years
- JOIN us in this exciting experiment with excellent discovery potential and cutting-edge instrumentations

Crystals with Mass Production Capability

Crystal	Nal:Tl	CsI:TI	Csl	BaF ₂	CeF ₃	PbF ₂	BGO	BSO	PbWO ₄	LYSO:Ce	AFO Glasses	Sapphire:Ti
Density (g/cm ³)	3.67	4.51	4.51	4.89	6.16	7.77	7.13	6.8	8.3	7.40	4.6	3.98
Melting points (°C)	651	621	621	1280	1460	824	1050	1030	1123	2050	λ	2040
X ₀ (cm)	2.59	1.86	1.86	2.03	1.65	0.94	1.12	1.15	0.89	1.14	2.96	7.02
R _M (cm)	4.13	3.57	3.57	3.10	2.39	2.18	2.23	2.33	2.00	2.07	2.89	2.88
λ _ι (cm)	42.9	39.3	39.3	30.7	23.2	22.4	22.7	23.4	20.7	20.9	26.4	24.2
Z _{eff}	50.1	54.0	54.0	51.6	51.7	77.4	72.9	75.3	74.5	64.8	42.8	11.2
dE/dX (MeV/cm)	4.79	5.56	5.56	6.52	8.40	9.42	8.99	8.59	10.1	9.55	6.84	6.75
λ _{peak} ^a (nm)	410	560	420 310	300 220	340 300	λ	480	470	425 420	420	365	750
Refractive Index ^b	1.85	1.79	1.95	1.50	1.62	1.82	2.15	2.68	2.20	1.82	λ	1.76
Normalized Light Yield ^{a,c}	120	190	4.2 1.3	42 4.8	8.6	۸	25	5	0.4 0.1	100	1.5	λ
Total Light yield (ph/MeV)	35,000	58,000	1700	13,000	2,600	۸	7,400	1,500	130	30,000	450	X
Decay time ^a (ns)	245	1220	30 6	600 0.5	30	λ	300	100	30 10	40	40	3200
Hygroscopic	Yes	Slight	Slight	No	No	No	No	No	No	No	No	No
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV Mu2e S. BELLE	TAPS Mu2e-II	١	A4 g-2	L3 BELLE CalVision	٨	CMS ALICE PrimEx Panda	COMET HERD CMS BTL RADICAL	HHCAL	HHCAL

Presentation by Ren-Yuan Zhu, Caltech, in the PIENUX Group meeting, at University of Washington